A308267 Numbers k such that k divides A048678(k).
1, 2, 4, 7, 8, 14, 16, 28, 31, 32, 56, 62, 64, 83, 112, 124, 127, 128, 166, 224, 248, 254, 256, 332, 397, 448, 496, 508, 511, 512, 664, 794, 891, 896, 992, 1016, 1022, 1024, 1163, 1328, 1588, 1782, 1792, 1984, 2032, 2044, 2047, 2048, 2326, 2656, 3176, 3441, 3564, 3584, 3968
Offset: 1
Examples
The first few terms of A048678 are 1,2,5,4,9,10,21,8. 2 is a multiple of 2, 5 isn't a multiple of 3, 4 is a multiple of 4, 9 isn't a multiple of 5, 10 isn't a multiple of 6, 21 is a multiple of 7, etc.
Programs
-
Haskell
bintodec :: [Integer] -> Integerbintodec = sum . zipWith (*) (iterate (*2) 1) . reverse decomp :: (Integer, [Integer]) -> (Integer, [Integer])decomp (x, ys) = if even x then (x `div` 2, 0:ys) else (x - 1, 1:ys) zeck :: Integer -> Integerzeck n = bintodec (1 : snd (last . takeWhile (\(x, _) -> x > 0) $ iterate decomp (n, []))) output :: [Integer]output = filter (\x -> 0 == zeck x `mod` x) [1..100] main :: IO ()main = print output
-
Mathematica
Select[Range[4000], Divisible[FromDigits[Flatten[IntegerDigits[#, 2] /. {1 -> {0, 1}}], 2], #] &] (* Amiram Eldar, Jul 08 2019 after Robert G. Wilson v at A048678 *)
Comments