cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308293 Lexicographically earliest sequence of positive terms such that a(1) = 1, a(2) = 2, and for any n > 0, (abs(a(n+2)-a(n)), abs(a(n+2)-a(n+1))) is unique.

This page as a plain text file.
%I A308293 #13 May 23 2019 01:37:11
%S A308293 1,2,1,1,1,2,3,1,1,3,1,4,1,1,4,5,1,1,5,1,2,4,6,1,1,6,1,4,6,2,1,6,2,7,
%T A308293 1,1,7,1,8,1,1,8,3,1,7,8,1,2,5,8,1,9,1,1,9,3,1,8,9,1,3,6,10,1,1,10,1,
%U A308293 5,8,2,10,1,8,10,1,11,1,1,11,4,1,9,10,1
%N A308293 Lexicographically earliest sequence of positive terms such that a(1) = 1, a(2) = 2, and for any n > 0, (abs(a(n+2)-a(n)), abs(a(n+2)-a(n+1))) is unique.
%C A308293 This sequence shows chaotic behavior (see scatterplot in Links section).
%C A308293 This behavior is determined by the choice of the two leading terms.
%C A308293 The variant, say b, with b(1) = b(2) = 1, corresponds to the natural numbers interspersed with pairs of ones: 1,1,1, 2,1,1, 3,1,1, etc. (b(n) = abs(A157128(n))).
%H A308293 Rémy Sigrist, <a href="/A308293/b308293.txt">Table of n, a(n) for n = 1..10000</a>
%H A308293 Rémy Sigrist, <a href="/A308293/a308293.png">Colored scatterplot of (abs(a(n+2)-a(n)), abs(a(n+2)-a(n+1))) for n = 1..32702782</a> (where the hue is function of n)
%H A308293 Rémy Sigrist, <a href="/A308293/a308293.txt">C program for A308293</a>
%e A308293 The first terms, alongside (abs(a(n+2)-a(n)), abs(a(n+2)-a(n+1))), are:
%e A308293   n   a(n)  (abs(a(n+2)-a(n)),abs(a(n+2)-a(n+1)))
%e A308293   --  ----  -------------------------------------
%e A308293    1     1  (0,1)
%e A308293    2     2  (1,0)
%e A308293    3     1  (0,0)
%e A308293    4     1  (1,1)
%e A308293    5     1  (2,1)
%e A308293    6     2  (1,2)
%e A308293    7     3  (2,0)
%e A308293    8     1  (2,2)
%e A308293    9     1  (0,2)
%e A308293   10     3  (1,3)
%e A308293   11     1  (0,3)
%e A308293   12     4  (3,0)
%e A308293   13     1  (3,3)
%e A308293   14     1  (4,1)
%e A308293   15     4  (3,4)
%o A308293 (C) See Links section.
%Y A308293 See A080427 for a simpler variant.
%Y A308293 Cf. A157128.
%K A308293 nonn
%O A308293 1,2
%A A308293 _Rémy Sigrist_, May 19 2019