cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308297 Expansion of Sum_{k>=1} mu(k)*log((theta_3(x^k) + 1)/2)/k, where theta_3() is the Jacobi theta function.

This page as a plain text file.
%I A308297 #5 May 19 2019 20:40:59
%S A308297 1,-1,0,1,-1,1,-1,0,1,-1,2,-3,1,1,-2,5,-6,4,-2,-3,10,-15,15,-9,-1,17,
%T A308297 -34,43,-39,17,25,-78,117,-127,93,3,-147,298,-394,369,-168,-211,680,
%U A308297 -1092,1251,-939,39,1336,-2827,3855,-3715,1857,1777,-6529,10922,-12789,9929
%N A308297 Expansion of Sum_{k>=1} mu(k)*log((theta_3(x^k) + 1)/2)/k, where theta_3() is the Jacobi theta function.
%C A308297 Inverse Euler transform of A010052.
%F A308297 G.f.: Sum_{k>=1} mu(k)*log(Sum_{j>=0} x^(j^2*k))/k.
%F A308297 Product_{n>=1} 1/(1 - x^n)^a(n) = g.f. of A010052.
%t A308297 nmax = 57; CoefficientList[Series[Sum[MoebiusMu[k] Log[(EllipticTheta[3, 0, x^k] + 1)/2]/k, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
%t A308297 nmax = 57; CoefficientList[Series[Sum[MoebiusMu[k] Log[Sum[x^(j^2 k), {j, 0, nmax}]]/k, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
%Y A308297 Cf. A000122, A001156, A008683, A010052, A316152.
%K A308297 sign
%O A308297 1,11
%A A308297 _Ilya Gutkovskiy_, May 19 2019