A308320 Decimal expansion of 2^(-7/4); exact length of the A4 paper size measured in meters according to the ISO 216 standard.
2, 9, 7, 3, 0, 1, 7, 7, 8, 7, 5, 0, 6, 8, 0, 2, 6, 6, 6, 7, 9, 3, 7, 4, 9, 9, 2, 6, 4, 0, 1, 1, 8, 9, 7, 8, 8, 2, 3, 2, 4, 3, 0, 2, 3, 1, 1, 5, 9, 5, 4, 3, 5, 3, 2, 5, 4, 7, 5, 0, 5, 5, 6, 1, 7, 9, 8, 6, 6, 6, 6, 7, 0, 5, 6, 7, 2, 9, 2, 8, 9, 9, 6, 7, 6, 9, 5, 3
Offset: 0
Examples
0.29730177... The exact lengths and widths (rounded to the nearest 1/10 mm) and areas of the A-series are as follows: . size | exact length | exact width | exact area (mm^2) A0 | 2^( 1/4) m = 1189.2 mm | 2^(- 1/4) m = 840.9 mm | 1000000 A1 | 2^(- 1/4) m = 840.9 mm | 2^(- 3/4) m = 594.6 mm | 500000 A2 | 2^(- 3/4) m = 594.6 mm | 2^(- 5/4) m = 420.4 mm | 250000 A3 | 2^(- 5/4) m = 420.4 mm | 2^(- 7/4) m = 297.3 mm | 125000 A4 | 2^(- 7/4) m = 297.3 mm | 2^(- 9/4) m = 210.2 mm | 62500 A5 | 2^(- 9/4) m = 210.2 mm | 2^(-11/4) m = 148.7 mm | 31250 A6 | 2^(-11/4) m = 148.7 mm | 2^(-13/4) m = 105.1 mm | 15625 A7 | 2^(-13/4) m = 105.1 mm | 2^(-15/4) m = 74.3 mm | 7812.5 A8 | 2^(-15/4) m = 74.3 mm | 2^(-17/4) m = 52.6 mm | 3906.25 A9 | 2^(-17/4) m = 52.6 mm | 2^(-19/4) m = 37.2 mm | 1953.125 A10 | 2^(-19/4) m = 37.2 mm | 2^(-21/4) m = 26.3 mm | 976.5625 . And the actual lengths, widths and areas (note that the actual areas are always smaller than the exact areas) are as follows: . size | actual length (mm) | actual width (mm) | actual area (mm^2) A0 | 1189 | 841 | 999949 (99.9949%) A1 | 841 | 594 | 499554 (99.9108%) A2 | 594 | 420 | 249480 (99.7920%) A3 | 420 | 297 | 124740 (99.7920%) A4 | 297 | 210 | 62370 (99.7920%) A5 | 210 | 148 | 31080 (99.4560%) A6 | 148 | 105 | 15540 (99.4560%) A7 | 105 | 74 | 7770 (99.4560%) A8 | 74 | 52 | 3848 (98.5088%) A9 | 52 | 37 | 1924 (98.5088%) A10 | 37 | 26 | 962 (98.5088%)
Programs
-
Mathematica
RealDigits[2^(-7/4),10,88][[1]] (* James C. McMahon, Feb 26 2024 *)
-
PARI
default(realprecision, 100); 2^(-7/4)
Formula
Equals square root of A222066. - R. J. Mathar, Jan 27 2021
Extensions
Edited by Jon E. Schoenfield, Feb 25 2024
Comments