This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308321 #26 Mar 09 2024 11:17:27 %S A308321 2,1,0,2,2,4,1,0,3,8,1,3,4,2,8,6,3,5,7,5,7,7,8,1,3,6,9,0,5,8,3,0,3,7, %T A308321 2,3,7,6,0,0,0,8,5,6,5,5,8,9,1,9,6,1,2,7,7,0,3,3,0,6,5,2,1,4,9,3,7,3, %U A308321 1,1,8,8,7,3,8,4,7,5,5,5,9,9,5,3,5,8,1,0 %N A308321 Decimal expansion of 2^(-9/4); exact width of the A4 paper size measured in meters according to the ISO 216 standard. %C A308321 Also exact length of the A5 paper size measured in meters. %C A308321 According to the ISO 216 standard, the A0 paper size is defined to have an area of 1 square meter where the ratio of the length to the width is sqrt(2), so the length is 2^(1/4) m and the width is 2^(-1/4) m. For each n >= 0, the length of the size A(n+1) is equal to the width of the size A(n) and the width of the size A(n+1) is equal to half of the length of the size A(n), so the area of the size A(n+1) is half of that of A(n). Equivalently, the length of the A(n) size is 2^(-n/2 + 1/4) m and the width is 2^(-n/2 - 1/4) m. For the A4 size, the exact length and width are 2^(-7/4) m = 297.301... mm (A308320) and 2^(-9/4) m = 210.224... mm, and the actual length and width are 297 mm and 210 mm. %H A308321 Prepressure, <a href="https://www.prepressure.com/library/paper-size/din-a4">A4</a>. %H A308321 Wikipedia, <a href="https://en.wikipedia.org/wiki/ISO-216">ISO 216</a>. %e A308321 The exact lengths and widths (rounded to the nearest 1/10 mm) and areas of the A-series are as follows: %e A308321 . %e A308321 size | exact length | exact width | exact area (mm^2) %e A308321 A0 | 2^( 1/4) m = 1189.2 mm | 2^(- 1/4) m = 840.9 mm | 1000000 %e A308321 A1 | 2^(- 1/4) m = 840.9 mm | 2^(- 3/4) m = 594.6 mm | 500000 %e A308321 A2 | 2^(- 3/4) m = 594.6 mm | 2^(- 5/4) m = 420.4 mm | 250000 %e A308321 A3 | 2^(- 5/4) m = 420.4 mm | 2^(- 7/4) m = 297.3 mm | 125000 %e A308321 A4 | 2^(- 7/4) m = 297.3 mm | 2^(- 9/4) m = 210.2 mm | 62500 %e A308321 A5 | 2^(- 9/4) m = 210.2 mm | 2^(-11/4) m = 148.7 mm | 31250 %e A308321 A6 | 2^(-11/4) m = 148.7 mm | 2^(-13/4) m = 105.1 mm | 15625 %e A308321 A7 | 2^(-13/4) m = 105.1 mm | 2^(-15/4) m = 74.3 mm | 7812.5 %e A308321 A8 | 2^(-15/4) m = 74.3 mm | 2^(-17/4) m = 52.6 mm | 3906.25 %e A308321 A9 | 2^(-17/4) m = 52.6 mm | 2^(-19/4) m = 37.2 mm | 1953.125 %e A308321 A10 | 2^(-19/4) m = 37.2 mm | 2^(-21/4) m = 26.3 mm | 976.5625 %e A308321 . %e A308321 And the actual lengths, widths and areas (note that the actual areas are always smaller than the exact areas) are as follows: %e A308321 . %e A308321 size | actual length (mm) | actual width (mm) | actual area (mm^2) %e A308321 A0 | 1189 | 841 | 999949 (99.9949%) %e A308321 A1 | 841 | 594 | 499554 (99.9108%) %e A308321 A2 | 594 | 420 | 249480 (99.7920%) %e A308321 A3 | 420 | 297 | 124740 (99.7920%) %e A308321 A4 | 297 | 210 | 62370 (99.7920%) %e A308321 A5 | 210 | 148 | 31080 (99.4560%) %e A308321 A6 | 148 | 105 | 15540 (99.4560%) %e A308321 A7 | 105 | 74 | 7770 (99.4560%) %e A308321 A8 | 74 | 52 | 3848 (98.5088%) %e A308321 A9 | 52 | 37 | 1924 (98.5088%) %e A308321 A10 | 37 | 26 | 962 (98.5088%) %t A308321 RealDigits[2^(-9/4),10,88][[1]] (* _James C. McMahon_, Feb 26 2024 *) %o A308321 (PARI) default(realprecision, 100); 2^(-9/4) %Y A308321 Cf. A010767 (2^(1/4)), A228497 (2^(-1/4)), A308320 (2^(-7/4)). %K A308321 nonn,cons %O A308321 0,1 %A A308321 _Jianing Song_, May 20 2019 %E A308321 Edited by _Jon E. Schoenfield_, Feb 25 2024