A308324 Numbers which can be written in the form m^k - m with m an odd prime and k a positive integer.
0, 6, 20, 24, 42, 78, 110, 120, 156, 240, 272, 336, 342, 506, 620, 726, 812, 930, 1320, 1332, 1640, 1806, 2162, 2184, 2394, 2756, 3120, 3422, 3660, 4422, 4896, 4970, 5256, 6162, 6558, 6806, 6840, 7832, 9312
Offset: 1
Examples
a(3) = 5^2 - 5 = 20.
Links
- Michael Bennett, On some exponential equations of S. S. Pillai, Canad. J. Math. 53 (2001), 897-922.
- Dana Mackenzie, 2184: An Absurd (and Adsurd) Tale, Integers (Electronic Journal of Combinatorial Number Theory), 18 (2018), A33.
Programs
-
PARI
x=List([]);lim=10000;forprime(m=3,lim,for(k=1,100,y=(m^k-m);if(y>lim,break,i=setsearch(x,y,1);if(i>0,listinsert(x, y, i)))));for(i=1, #x,print(x[i]));
Comments