This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308334 #21 Sep 10 2022 08:38:46 %S A308334 1,2,3,4,5,6,7,16,13,8,11,9,10,21,12,17,14,19,15,18,23,20,25,22,27,28, %T A308334 29,24,31,26,33,36,37,32,41,34,43,35,40,39,42,45,38,47,44,49,52,53,48, %U A308334 59,50,57,51,56,61,60,67,62,65,63,64,71,58,69,66,77,54 %N A308334 Lexicographically earliest sequence of distinct positive numbers such that for any n > 0, a(n) OR a(n+1) is a prime number (where OR denotes the bitwise OR operator). %C A308334 By Dirichlet's theorem on arithmetic progressions, we can always extend the sequence: say a(n) < 2^k, then a(n) OR 1 and 2^k are coprime and there are infinitely many prime numbers of the form (a(n) OR 1) + m*2^k = a(n) OR (1 + m*2^k) and we can extend the sequence. %C A308334 Will every integer appear in this sequence? %C A308334 Numerous sequences are based on the same model: the sequence is the lexicographically earliest sequence of distinct positive terms such that some function in two variables yields prime numbers when applied to consecutive terms: %C A308334 f(u,v) Analog sequence %C A308334 ------- ----------------- %C A308334 u OR v a (this sequence) %C A308334 u + v A055265 %C A308334 u*v + 1 A073666 %C A308334 u*v - 1 A081943 %C A308334 abs(u-v) A065186 %C A308334 max(u,v) A282649 %C A308334 u^2 + v^2 A100208 %C A308334 The appearance of numbers much earlier or later than their corresponding index is flagged strikingly in the plot2 graph of a(n)/n (see links). - _Peter Munn_, Sep 10 2022 %H A308334 Rémy Sigrist, <a href="/A308334/b308334.txt">Table of n, a(n) for n = 1..10000</a> %H A308334 Peter Munn, <a href="https://oeis.org/plot2a?name1=A308334&name2=A000027&tform1=untransformed&tform2=untransformed&shift=0&radiop1=ratio&drawlines=true">Plot2 graph of a(n)/n</a> %e A308334 The first terms, alongside a(n) OR a(n+1), are: %e A308334 n a(n) a(n) OR a(n+1) %e A308334 -- ---- -------------- %e A308334 1 1 3 %e A308334 2 2 3 %e A308334 3 3 7 %e A308334 4 4 5 %e A308334 5 5 7 %e A308334 6 6 7 %e A308334 7 7 23 %e A308334 8 16 29 %e A308334 9 13 13 %e A308334 10 8 11 %e A308334 11 11 11 %e A308334 12 9 11 %o A308334 (PARI) s=0; v=1; for (n=1, 67, s+=2^v; print1 (v ", "); for (w=1, oo, if (!bittest(s,w) && isprime(o=bitor(v,w)), v=w; break))) %o A308334 (Python) %o A308334 from sympy import isprime %o A308334 from itertools import count, islice %o A308334 def agen(): %o A308334 aset, k, mink = {1}, 1, 2 %o A308334 for n in count(1): %o A308334 an = k; yield an; aset.add(an) %o A308334 s, k = set(str(an)), mink %o A308334 while k in aset or not isprime(an|k): k += 1 %o A308334 while mink in aset: mink += 1 %o A308334 print(list(islice(agen(), 67))) # _Michael S. Branicky_, Sep 10 2022 %Y A308334 See A308340 for the corresponding prime numbers. %Y A308334 See A055265, A065186, A073666, A081943, A100208, A282649 for similar sequences. %K A308334 nonn,base %O A308334 1,2 %A A308334 _Rémy Sigrist_, May 20 2019