This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308356 #35 May 25 2019 10:09:38 %S A308356 1,0,1,0,-1,1,0,1,0,1,0,-1,1,-1,1,0,1,5,5,0,1,0,-1,36,-120,15,-1,1,0, %T A308356 1,329,6286,2380,56,0,1,0,-1,3655,-557991,1056496,-52556,203,-1,1,0,1, %U A308356 47844,74741031,1006985994,197741887,1192625,757,0,1 %N A308356 A(n,k) = (1/k!) * Sum_{i_1=1..n} Sum_{i_2=1..n} ... Sum_{i_k=1..n} (-1)^(i_1 + i_2 + ... + i_k) * multinomial(i_1 + i_2 + ... + i_k; i_1, i_2, ..., i_k), square array A(n,k) read by antidiagonals, for n >= 0, k >= 0. %H A308356 Seiichi Manyama, <a href="/A308356/b308356.txt">Antidiagonals n = 0..50, flattened</a> %F A308356 A(n,k) = Sum_{i=k..k*n} b(i) where Sum_{i=k..k*n} b(i) * (-x)^i/i! = (1/k!) * (Sum_{i=1..n} x^i/i!)^k. %e A308356 For (n,k) = (3,2), (1/2) * (Sum_{i=1..3} x^i/i!)^2 = (1/2) * (x + x^2/2 + x^3/6)^2 = (-x)^2/2 + (-3)*(-x)^3/6 + 7*(-x)^4/24 + (-10)*(-x)^5/120 + 10*(-x)^6/720. So A(3,2) = 1 - 3 + 7 - 10 + 10 = 5. %e A308356 Square array begins: %e A308356 1, 0, 0, 0, 0, 0, ... %e A308356 1, -1, 1, -1, 1, -1, ... %e A308356 1, 0, 1, 5, 36, 329, ... %e A308356 1, -1, 5, -120, 6286, -557991, ... %e A308356 1, 0, 15, 2380, 1056496, 1006985994, ... %e A308356 1, -1, 56, -52556, 197741887, -2063348839223, ... %e A308356 1, 0, 203, 1192625, 38987482590, 4546553764660831, ... %Y A308356 Columns k=0..4 give A000012, (-1)*A000035, A307349, (-1)*A307350, A307351. %Y A308356 Rows n=0..5 give A000007, A033999, A278990, A308363, A308389, A308390. %Y A308356 Main diagonal gives A308327. %Y A308356 Cf. A144510. %K A308356 sign,tabl %O A308356 0,18 %A A308356 _Seiichi Manyama_, May 21 2019