cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308359 Triangle T(n,w) read by rows: the number of fixed polyominoes with n cells and width w of the convex hull.

This page as a plain text file.
%I A308359 #23 Oct 10 2022 10:18:06
%S A308359 1,1,1,1,4,1,1,9,8,1,1,18,31,12,1,1,35,95,68,16,1,1,66,269,282,121,20,
%T A308359 1,1,123,721,1027,638,190,24,1,1,228,1866,3468,2817,1226,275,28,1,1,
%U A308359 421,4728,11132,11254,6391,2110,376,32,1,1,776,11804,34558,42099,29388,12758,3354,493,36,1
%N A308359 Triangle T(n,w) read by rows: the number of fixed polyominoes with n cells and width w of the convex hull.
%C A308359 The sequence counts the fixed n-ominoes with prescribed bounding box width w and variable height w <= h <= n.
%H A308359 R. J. Mathar, <a href="/A308359/b308359.txt">Table of n, a(n) for n = 1..109</a>
%H A308359 <a href="/index/Pol#polyominoes">Index entries for sequences related to polyominoes</a>
%F A308359 T(n,1) = T(n,n) = 1 (the straight n-ominoes).
%F A308359 T(n,n-1) = 4*n-8 for n >= 3 (width n-1 and height 2).
%F A308359 Conjecture: T(n,n-2) = 8*n^2 - 51*n + 86 for n >= 5.
%e A308359 T(3,2) = 4 counts the 4 variants of the L-shaped tromino rotated by multiples of 90 degrees. T(4,2) = 9 counts one O-tetromino in a 2 X 2 box, 4 L-tetrominoes in a 3 X 2 box, 2 T-tetromoes in a 3 X 2 box, and 2 Z-tetrominoes in a 3 X 2 box.
%e A308359 The triangle starts
%e A308359   1;
%e A308359   1,   1;
%e A308359   1,   4,   1;
%e A308359   1,   9,   8,   1;
%e A308359   1,  18,  31,  12,   1;
%e A308359   1,  35,  95,  68,  16,   1;
%e A308359   1,  66, 269, 282, 121,  20,   1;
%Y A308359 Cf. A027053 (column w=2), A335606 (w=3), A001168 (row sums), A273895, A292357 (prescribed w and h).
%K A308359 nonn,tabl
%O A308359 1,5
%A A308359 _R. J. Mathar_, May 22 2019