cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308370 G.f. A(x) satisfies: A(x) = x * Product_{k>=1} (1 + A(x^k))^k.

This page as a plain text file.
%I A308370 #9 May 22 2019 20:59:27
%S A308370 1,1,3,8,20,47,118,280,681,1640,3963,9523,23004,55377,133477,321597,
%T A308370 775054,1867304,4499934,10842847,26127768,62958232,151708512,
%U A308370 365562567,880881465,2122617010,5114772619,12324827128,29698572295,71563264162,172442689864,415527172616
%N A308370 G.f. A(x) satisfies: A(x) = x * Product_{k>=1} (1 + A(x^k))^k.
%F A308370 G.f. A(x) satisfies: A(x) = x * exp(-Sum_{k>=1} Sum_{d|k} d^2 * (-A(x^d))^(k/d) / k).
%t A308370 terms = 32; A[_] = 0; Do[A[x_] = x Product[(1 + A[x^k])^k, {k, 1, terms}] + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x] // Rest
%Y A308370 Cf. A050383, A091865, A308369, A308371, A308372.
%K A308370 nonn
%O A308370 1,3
%A A308370 _Ilya Gutkovskiy_, May 22 2019