cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308372 G.f. A(x) satisfies: A(x) = x * Product_{k>=1} (1 + k*A(x^k)).

This page as a plain text file.
%I A308372 #8 May 22 2019 20:59:39
%S A308372 1,1,3,8,19,45,110,259,614,1466,3479,8239,19581,46445,110209,261555,
%T A308372 620649,1472597,3494663,8292514,19677729,46694303,110804310,262932172,
%U A308372 623928374,1480555791,3513297447,8336903884,19783134767,46944538382,111397439864,264341463510
%N A308372 G.f. A(x) satisfies: A(x) = x * Product_{k>=1} (1 + k*A(x^k)).
%F A308372 G.f. A(x) satisfies: A(x) = x * exp(-Sum_{k>=1} Sum_{d|k} d * (-d * A(x^d))^(k/d) / k).
%t A308372 terms = 32; A[_] = 0; Do[A[x_] = x Product[(1 + k A[x^k]), {k, 1, terms}] + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x] // Rest
%Y A308372 Cf. A050383, A091865, A308369, A308370, A308371.
%K A308372 nonn
%O A308372 1,3
%A A308372 _Ilya Gutkovskiy_, May 22 2019