This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308377 #16 Dec 09 2024 16:38:37 %S A308377 2487159630,2581740963,3697512840,3751908642,3791508642,3796512840, %T A308377 4283716590,4573921680,4609785321,4832716590,4960785321,4976853210, %U A308377 5016793284,5071693284,5106793284,5170693284,5179386420,5187429630,5389710642,5397186420,5473921680,5710693284,5731908642,5786413290,5791308642,5809764321,5839710642,5847102963,5897130642,5897643210,5907864321 %N A308377 "Autotomy numbers" that have exactly 10 distinct decimal digits. Subtracting their last digit from the remaining part produces a shorter autotomy number (still with no duplicate digit). This process is iterated until the remaining part has only one digit (details in the Example section). %C A308377 The sequence is finite and has 182 terms; a(182) = 9876543210. %H A308377 Jean-Marc Falcoz, <a href="/A308377/b308377.txt">Table of n, a(n) for n = 1..182</a> %H A308377 Eric Angelini, <a href="https://cinquantesignes.blogspot.com/2019/05/pandigitaux-et-saucissons.html">Pandigitaux et saucissons</a> (in French). %e A308377 a(2) = 2581740963 %e A308377 Subtract 3 (last digit) from the remaining part 258174096 = 258174093 %e A308377 Subtract 3 (last digit) from the remaining part 25817409 = 25817406 %e A308377 Subtract 6 (last digit) from the remaining part 2581740 = 2581734 %e A308377 Subtract 4 (last digit) from the remaining part 258173 = 258169 %e A308377 Subtract 9 (last digit) from the remaining part 25816 = 25807 %e A308377 Subtract 7 (last digit) from the remaining part 2580 = 2573 %e A308377 Subtract 3 (last digit) from the remaining part 257 = 254 %e A308377 Subtract 4 (last digit) from the remaining part 25 = 21 %e A308377 Subtract 1 (last digit) from the remaining part 2 = 1 (single digit, end). %Y A308377 Cf. A308393 (definition of an "autotomy number"), A050278 (pandigital numbers, version 1: each digit appears exactly once), A171102 (pandigital numbers, version 2: each digit appears at least once). %K A308377 base,nonn,fini %O A308377 1,1 %A A308377 _Eric Angelini_ and _Jean-Marc Falcoz_, May 23 2019