cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308379 E.g.f. A(x) satisfies: A(x) = x * Product_{k>=1} 1/(1 - A(x^k))^(1/k).

This page as a plain text file.
%I A308379 #7 May 24 2019 13:07:36
%S A308379 1,2,15,152,2255,40944,938161,25026896,777966129,27346727600,
%T A308379 1077001807871,46870231698168,2235954785893231,115950345421719704,
%U A308379 6496012991027031585,390935629387700612384,25153144712405994085409,1722934940168892344912928,125180348349211811174365615
%N A308379 E.g.f. A(x) satisfies: A(x) = x * Product_{k>=1} 1/(1 - A(x^k))^(1/k).
%F A308379 E.g.f. A(x) satisfies: A(x) = x * exp(Sum_{k>=1} Sum_{d|k} A(x^d)^(k/d) / k).
%t A308379 terms = 19; A[_] = 0; Do[A[x_] = x Product[1/(1 - A[x^k])^(1/k), {k, 1, terms}] + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x] Range[0, terms]! // Rest
%Y A308379 Cf. A050383, A308369, A308380.
%K A308379 nonn
%O A308379 1,2
%A A308379 _Ilya Gutkovskiy_, May 23 2019