cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308380 E.g.f. A(x) satisfies: A(x) = x * Product_{k>=1} (1 + A(x^k))^(1/k).

This page as a plain text file.
%I A308380 #6 May 24 2019 13:07:42
%S A308380 1,2,9,56,455,4224,48391,609104,8814753,140512400,2483071481,
%T A308380 47387543928,989622741367,22107721563368,530909919285495,
%U A308380 13581037512256544,369627228319635329,10633498287935101920,323389433072136213289,10342303284390333962600,347514522157550224614711
%N A308380 E.g.f. A(x) satisfies: A(x) = x * Product_{k>=1} (1 + A(x^k))^(1/k).
%F A308380 E.g.f. A(x) satisfies: A(x) = x * exp(-Sum_{k>=1} Sum_{d|k} (-A(x^d))^(k/d) / k).
%t A308380 terms = 21; A[_] = 0; Do[A[x_] = x Product[(1 + A[x^k])^(1/k), {k, 1, terms}] + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x] Range[0, terms]! // Rest
%Y A308380 Cf. A091865, A308370, A308379.
%K A308380 nonn
%O A308380 1,2
%A A308380 _Ilya Gutkovskiy_, May 23 2019