This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308385 #34 Sep 08 2022 08:46:21 %S A308385 1,3,15,29,61,87,139,177,249,299,391,453,565,639,771,857,1009,1107, %T A308385 1279,1389,1581,1703,1915,2049,2281,2427,2679,2837,3109,3279,3571, %U A308385 3753,4065,4259,4591,4797,5149,5367,5739,5969,6361,6603,7015,7269,7701,7967,8419 %N A308385 a(n) is the last square visited by fers moves on a spirally numbered (2n-1) X (2n-1) board, moving to the lowest available unvisited square at each step. %C A308385 A 5 X 5 board, for example, is numbered with the square spiral: %C A308385 . %C A308385 21--22--23--24--25 %C A308385 | %C A308385 20 7---8---9--10 %C A308385 | | | %C A308385 19 6 1---2 11 %C A308385 | | | | %C A308385 18 5---4---3 12 %C A308385 | | %C A308385 17--16--15--14--13 %C A308385 . %C A308385 A fers is a (1,1)-leaper and can move one square diagonally. %H A308385 Colin Barker, <a href="/A308385/b308385.txt">Table of n, a(n) for n = 1..1000</a> %H A308385 Stephen Emmerson and Geoff Foster, <a href="http://www.theproblemist.org/dloads/Glossary.pdf">A glossary of fairy chess definitions</a>, British Chess Problem Society, 2018. %H A308385 Wikipedia, <a href="https://en.wikipedia.org/wiki/Ferz">Ferz</a> %H A308385 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-2,-1,1). %F A308385 a(n) = (4n^2-9n+6)*[n is odd] + (4n^2-11n+9)*[n is even] where [] is the Iverson bracket. %F A308385 a(n) = A054556(n)*[n is odd] + (A054552(n)+1)*[n is even] where [] is the Iverson bracket. %F A308385 a(n) = A316884(n^2)*[n is odd] + A316884(n^2-n)*[n is even] where [] is the Iverson bracket. %F A308385 From _Colin Barker_, May 23 2019: (Start) %F A308385 G.f.: x*(1 + 2*x + 10*x^2 + 10*x^3 + 9*x^4) / ((1 - x)^3*(1 + x)^2). %F A308385 a(n) = (3/2)*(5+(-1)^n) - (10+(-1)^n)*n + 4*n^2. %F A308385 a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>4. %F A308385 (End) %F A308385 E.g.f.: (1/2)*exp(-x)*(3 + 2*x + exp(2*x)*(15 - 12*x + 8*x^2)) - 9. - _Stefano Spezia_, Aug 17 2019 %t A308385 Table[(3/2) (5 + (-1)^n) - (10 + (-1)^n) n + 4 n^2, {n, 60}] (* _Vincenzo Librandi_, Aug 01 2019 *) %o A308385 (PARI) Vec(x*(1 + 2*x + 10*x^2 + 10*x^3 + 9*x^4) / ((1 - x)^3*(1 + x)^2) + O(x^40)) \\ _Colin Barker_, May 23 2019 %o A308385 (Magma) [(3/2)*(5+(-1)^n) - (10+(-1)^n)*n + 4*n^2: n in [1..50]]; // _Vincenzo Librandi_, Aug 01 2019 %Y A308385 Cf. A054552, A054556, A316667, A316884. %K A308385 nonn,easy %O A308385 1,2 %A A308385 _Sangeet Paul_, May 23 2019