This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308391 #21 Jul 14 2019 13:31:30 %S A308391 58,6610,668843,66965113,6697324753,669740590290,66974140069358, %T A308391 6697414817000983,669741489800555031,66974149061059480123 %N A308391 Number of ordered pairs of n-digit positive integers the product of which is a 2n-digit integer. %F A308391 a(n) = 9*10^(2n-1) - 10^n - Sum_{k=10^(n-1)+1..10^n-1} ceiling(10^(2n-1)/k). %F A308391 a(n) ~ (9-log(10))*10^(2n-1). %e A308391 a(1)=58 since we get the following pairs: (2, 5), ..., (2, 9), (3, 4), ..., (3, 9), (4, 3), ..., (4, 9), (5, 2), ..., (5, 9), (6, 2), ..., (6, 9), (7, 2), ..., (7, 9), (8, 2), ..., (8, 9), (9, 2), ..., (9, 9). %o A308391 (Python) %o A308391 import math %o A308391 ende = 1 %o A308391 for i in range(1,10): %o A308391 anz = 0 %o A308391 for a in range(ende, 10*ende): %o A308391 z = math.ceil((ende*ende*10)/a) %o A308391 if z < ende*10: %o A308391 anz = anz + ende*10 - z %o A308391 ende = ende*10 %o A308391 print(i, anz) %o A308391 (PARI) a(n) = 9*10^(2*n-1) - 10^n - sum(k=10^(n-1)+1, 10^n-1, ceil(10^(2*n-1)/k)); \\ _Michel Marcus_, Jun 25 2019 %Y A308391 Cf. A174425. %K A308391 nonn,base,more %O A308391 1,1 %A A308391 _Reiner Moewald_, May 23 2019