cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308394 Numbers which can be written in the form m^k - m with m prime and k a positive integer.

This page as a plain text file.
%I A308394 #24 Aug 12 2019 02:24:59
%S A308394 0,2,6,14,20,24,30,42,62,78,110,120,126,156,240,254,272,336,342,506,
%T A308394 510,620,726,812,930,1022,1320,1332,1640,1806,2046,2162,2184,2394,
%U A308394 2756,3120,3422,3660,4094,4422,4896,4970,5256,6162,6558,6806,6840,7832,8190,9312
%N A308394 Numbers which can be written in the form m^k - m with m prime and k a positive integer.
%C A308394 The only known terms which have two representations where m is prime are 6 and 2184. It is conjectured by Bennett these are the only terms with this property.
%H A308394 Robert Israel, <a href="/A308394/b308394.txt">Table of n, a(n) for n = 1..10000</a>
%H A308394 Michael Bennett, <a href="https://doi.org/10.4153/CJM-2001-036-6">On some exponential equations of S. S. Pillai</a>, Canad. J. Math. 53 (2001), 897-922.
%H A308394 Dana Mackenzie, <a href="http://math.colgate.edu/~integers/s33/s33.Abstract.html">2184: An Absurd (and Adsurd) Tale</a>, Integers (Electronic Journal of Combinatorial Number Theory), 18 (2018), A33.
%e A308394 a(9) = 2^6 - 2 = 62.
%e A308394 For the two terms known to have two representations we have a(3) = 6 = 2^3 - 2 = 3^2 - 3 and a(33)= 2184 = 3^7 - 3 = 13^3 - 13.
%p A308394 N:= 10^6; # to get all terms <= N
%p A308394 P:= select(isprime,[2,seq(i,i=3..floor((1+sqrt(1+4*N))/2),2)]):
%p A308394 S:= {0,seq(seq(m^k-m,k=2..floor(log[m](N+m))),m=P)}:
%p A308394 sort(convert(S,list)); # _Robert Israel_, Aug 11 2019
%o A308394 (PARI) x=List([]); lim=10000; forprime(m=2, lim, for(k=1, 100, y=(m^k-m); if(y>lim, break, i=setsearch(x, y, 1); if(i>0, listinsert(x, y, i))))); for(i=1, #x, print(x[i]));
%o A308394 (PARI) isok(n) = {forprime(p=2, oo, my(keepk = 0); for (k=1, oo, if ((x=p^k - p) == n, return(1)); if (x > n, keepk = k; break);); if (keepk == 2, break););} \\ _Michel Marcus_, Aug 06 2019
%Y A308394 Cf. A057895, A057896, A246068, A308324.
%Y A308394 Subsequences: A000918 (2^n - 2), A036689 (p^2 - p), A058809 (3^n - 3), A178671 (5^n - 5).
%K A308394 nonn,easy
%O A308394 1,2
%A A308394 _Craig J. Beisel_, May 24 2019