This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308395 #96 Aug 02 2019 18:56:27 %S A308395 2,5,6,9,10,13,14,17,18,20,21,22,24,25,26,27,29,30,33,34,35,37,38,39, %T A308395 41,42,44,45,46,48,49,50,51,53,54,55,56,57,58,61,62,65,66,68,69,70,73, %U A308395 74,75,76,77,78,80,81,82,84,85,86,89,90,91,92,93,94,95,97 %N A308395 Numbers y such that x*(x+1) + y*(y+1) = z*(z+1) is solvable in positive integers x, z with x <= y. %H A308395 Chai Wah Wu, <a href="/A308395/b308395.txt">Table of n, a(n) for n = 1..10000</a> %e A308395 14 is a term because 14*15 + 14*15 = 20*21. %t A308395 max = 220; lst = {}; For[x = 1, x < max, x++, %t A308395 For[y = x, y < max, y++, %t A308395 For[z = y, z < max, z++, %t A308395 If[x (x + 1) + y (y + 1) == z (z + 1), %t A308395 lst = AppendTo[lst, y]]]]]; Select[Union[lst], # < max/2 &] %o A308395 (Python) %o A308395 from sympy import integer_nthroot %o A308395 A308395_list, y, w = [], 1, 0 %o A308395 while len(A308395_list) < 10000: %o A308395 w += y %o A308395 z = 0 %o A308395 for x in range(1,y+1): %o A308395 z += x %o A308395 if integer_nthroot(8*(w+z)+1,2)[1]: %o A308395 A308395_list.append(y) %o A308395 break %o A308395 y += 1 # _Chai Wah Wu_, Aug 02 2019 %Y A308395 Cf. A012132. %K A308395 nonn %O A308395 1,1 %A A308395 _Ralf Steiner_, Jul 31 2019