cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308399 Expansion of 1 / Sum_{k=-oo..oo} (-x)^(k*(4*k + 1)).

This page as a plain text file.
%I A308399 #22 Aug 05 2021 12:47:37
%S A308399 1,0,0,1,0,1,1,0,2,1,1,3,1,3,3,2,6,3,4,8,4,9,9,6,15,10,12,20,12,22,23,
%T A308399 18,35,26,30,46,32,51,54,45,76,62,71,99,76,111,117,104,160,136,154,
%U A308399 205,167,230,244,223,319,286,319,406,349,456,484,458,619,570,632,779,695
%N A308399 Expansion of 1 / Sum_{k=-oo..oo} (-x)^(k*(4*k + 1)).
%C A308399 Number of partitions of n into parts congruent to {0, 3, 5} mod 8.
%C A308399 Convolution inverse of A244465.
%H A308399 Ludovic Schwob, <a href="/A308399/b308399.txt">Table of n, a(n) for n = 0..10000</a>
%F A308399 G.f.: 1 / Sum_{k>=0} (-x)^A074378(k).
%F A308399 G.f.: Product_{k>=1} 1 / ((1 - x^(8*k - 5)) * (1 - x^(8*k - 3)) * (1 - x^(8*k))).
%F A308399 G.f.: ( Sum_{k>=0} A000041(k)*(-x)^k ) / ( Sum_{k>=0} A000009(2*k)*(-x)^k ).
%F A308399 a(n) ~ sqrt(sqrt(2) - 1) * exp(sqrt(n)*Pi/2) / (2^(9/4)*n). - _Vaclav Kotesovec_, May 25 2019
%F A308399 a(n) = a(n-3) + a(n-5) - a(n-14) - a(n-18) + + - - (with a(0)=1 and a(n) = 0 for negative n), where 3, 5, 14, 18, ... is the sequence A074378. - _Ludovic Schwob_, Aug 04 2021
%e A308399 For n=23 the a(23)=6 solutions are 3+3+3+3+3+3+5, 3+3+3+3+3+8, 3+3+3+3+11, 3+5+5+5+5, 5+5+5+8, and 5+5+13.
%t A308399 nmax = 68; CoefficientList[Series[1/Sum[(-x)^(k (4 k + 1)), {k, -nmax, nmax}], {x, 0, nmax}], x]
%t A308399 nmax = 68; CoefficientList[Series[Product[1/((1 - x^(8 k - 5)) (1 - x^(8 k - 3)) (1 - x^(8 k))), {k, 1, nmax}], {x, 0, nmax}], x]
%t A308399 nmax = 68; CoefficientList[Series[Sum[PartitionsP[k] (-x)^k, {k, 0, nmax}]/Sum[PartitionsQ[2 k] (-x)^k, {k, 0, nmax}], {x, 0, nmax}], x]
%Y A308399 Cf. A000009, A000041, A006950, A007742, A047622, A074378, A195850, A244465, A308400.
%K A308399 nonn
%O A308399 0,9
%A A308399 _Ilya Gutkovskiy_, May 24 2019