This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308400 #8 May 25 2019 02:47:39 %S A308400 1,0,0,0,0,1,0,1,0,0,1,0,2,0,1,1,0,3,0,3,1,1,3,0,6,1,3,3,1,8,1,8,3,3, %T A308400 9,2,14,3,9,9,4,19,4,19,9,10,21,6,32,10,22,22,12,42,12,43,23,25,48,18, %U A308400 67,25,51,51,31,88,31,90,54,59,101,44,137,60,108,109,73,177,73 %N A308400 Expansion of 1 / Sum_{k=-oo..oo} (-x)^(k*(6*k + 1)). %C A308400 Number of partitions of n into parts congruent to {0, 5, 7} mod 12. %C A308400 Convolution inverse of A247223. %F A308400 G.f.: 1 / Sum_{k>=1} (-x)^A036498(k). %F A308400 G.f.: Product_{k>=1} 1 / ((1 - x^(12*k - 7)) * (1 - x^(12*k - 5)) * (1 - x^(12*k))). %F A308400 a(n) ~ (sqrt(3) - 1) * exp(sqrt(n/6)*Pi) / (2^(5/2)*n). - _Vaclav Kotesovec_, May 25 2019 %t A308400 nmax = 78; CoefficientList[Series[1/Sum[(-x)^(k (6 k + 1)), {k, -nmax, nmax}], {x, 0, nmax}], x] %t A308400 nmax = 78; CoefficientList[Series[Product[1/((1 - x^(12 k - 7)) * (1 - x^(12 k - 5)) * (1 - x^(12 k))), {k, 1, nmax}], {x, 0, nmax}], x] %Y A308400 Cf. A006950, A036498, A049453, A210964, A247223, A263536, A308399. %K A308400 nonn %O A308400 0,13 %A A308400 _Ilya Gutkovskiy_, May 24 2019