This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308402 #18 Jun 04 2020 02:54:40 %S A308402 1,3,30,105,210,231,30030,2145,72930,969969,9699690,10140585,20281170, %T A308402 22287,6463230,7713865005,15427730010,90751353,436514007930, %U A308402 1641030105,134564468610,368217318651,3682173186510,3762220429695,127915494609630,1546231253523,819502564367190,54496920530418135 %N A308402 Denominators of the sequence of rational numbers Rn+ related to Bernoulli numbers. %C A308402 The sequence Rn+ is defined by Rn+ = psi(binomial(x+2, 2)^n) where the linear form psi is defined by psi(x^n) = Bernoulli(n). %C A308402 The companion sequence Rn- is defined by Rn+ = psi(binomial(x+1, 2)^n), and differs at n=1 with value -1/6 instead of 1/3. %H A308402 Frédéric Chapoton, <a href="https://arxiv.org/abs/1905.09012">Ramanujan-Bernoulli numbers as moments of Racah polynomials</a>, arXiv:1905.09012 [math.NT], 2019. %H A308402 Ludwig Seidel, <a href="http://publikationen.badw.de/de/003384831">Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen</a>, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. %H A308402 M. B. Villarino, <a href="http://arxiv.org/abs/0707.3950">Ramanujan's Harmonic Number Expansion into Negative Powers of a Triangular Number</a>, arXiv:0707.3950v2 [math.CA], 28 Jul 2007. %H A308402 M. B. Villarino, <a href="https://www.emis.de/journals/JIPAM/article1026.html">Ramanujan’s Harmonic Number Expansion into Negative Powers of a Triangular Number</a>, Journal of Inequalities in Pure and Applied Mathematics, Volume 9, Issue 3, Article 89. %e A308402 The sequence Rn+ begins 1, 1/3, 1/30, -1/105, 1/210, -1/231, 191/30030, -29/2145, 2833/72930, ... %o A308402 (PARI) a(n) = my(p=binomial(x+2, 2)^n); denominator(sum(k=0, poldegree(p), bernfrac(k)*polcoef(p, k, x))); %Y A308402 Cf. A238813 (numerators of Rn+, for n >0, up to sign). %K A308402 nonn,frac %O A308402 0,2 %A A308402 _Michel Marcus_, May 25 2019