cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308412 Indices of Gaussian primes on a square spiral.

This page as a plain text file.
%I A308412 #90 Feb 16 2025 08:33:55
%S A308412 3,5,7,9,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,
%T A308412 52,54,60,62,68,70,76,78,82,84,88,90,92,94,98,100,102,104,108,110,112,
%U A308412 114,118,120,122,126,128,132,134,138,140,144,146,150,152,156,158
%N A308412 Indices of Gaussian primes on a square spiral.
%C A308412 These are the numbers k > 0 such that A174344(k) + i*A274923(k) is a Gaussian prime (where i denotes the imaginary unit).
%C A308412 For symmetry reasons, we obtain the same sequence when considering a clockwise or a counterclockwise square spiral, or when initially moving towards any unit direction.
%C A308412 All terms except the first four are even.
%H A308412 Robert Israel, <a href="/A308412/b308412.txt">Table of n, a(n) for n = 1..10000</a>
%H A308412 Rémy Sigrist, <a href="/A308412/a308412_1.gp.txt">PARI program for A308412</a>
%H A308412 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GaussianPrime.html">Gaussian Prime</a>
%e A308412 The first terms displayed on the center of a counterclockwise square spiral are:
%e A308412   y\x|    -5   -4   -3   -2   -1    0   +1   +2   +3   +4   +5
%e A308412   ---+--------------------------------------------------------
%e A308412    +5|     *--100----*---98----*----*----*---94----*---92----*
%e A308412      |     |                                                 |
%e A308412    +4|   102    *----*----*---62----*---60----*----*----*   90
%e A308412      |     |    |                                       |    |
%e A308412    +3|     *    *    *---36----*---34----*---32----*    *    *
%e A308412      |     |    |    |                             |    |    |
%e A308412    +2|   104    *   38    *---16----*---14----*   30    *   88
%e A308412      |     |    |    |    |                   |    |    |    |
%e A308412    +1|     *   68    *   18    5----*----3   12    *   54    *
%e A308412      |     |    |    |    |    |         |    |    |    |    |
%e A308412     0|     *    *   40    *    *    *----*    *   28    *    *
%e A308412      |     |    |    |    |    |              |    |    |    |
%e A308412    -1|     *   70    *   20    7----*----9---10    *   52    *
%e A308412      |     |    |    |    |                        |    |    |
%e A308412    -2|   108    *   42    *---22----*---24----*---26    *   84
%e A308412      |     |    |    |                                  |    |
%e A308412    -3|     *    *    *---44----*---46----*---48----*----*    *
%e A308412      |     |    |                                            |
%e A308412     4|   110    *----*----*---76----*---78----*----*----*---82
%e A308412      |     |
%e A308412     5|     *--112----*--114----*----*----*--118----*--120----*
%p A308412 SP:= proc(n) option remember; local k;
%p A308412 k:=floor(sqrt(4*n-7)) mod 4;
%p A308412 procname(n-1) -I*exp(I*k*Pi/2)
%p A308412 end proc:
%p A308412 SP(1):= 0:
%p A308412 select(i -> GaussInt:-GIprime(SP(i)), [$1..1000]); # _Robert Israel_, May 20 2024
%o A308412 (PARI) \\ See Links section.
%Y A308412 Cf. A174344, A274923.
%K A308412 nonn
%O A308412 1,1
%A A308412 _Rémy Sigrist_, Jun 01 2019