This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308433 #8 May 27 2019 18:23:32 %S A308433 1,2,3,8,15,36,84,200,468,1130,2717,6576,15938,38780,94485,230816, %T A308433 564553,1383318,3393742,8336960,20502216,50472928,124369832,306729456, %U A308433 757078000,1870040822,4622317812,11432698704,28294211920,70063292310,173584768088,430276174016,1067049650238 %N A308433 G.f.: x * (d/dx) x * Product_{k>=1} (1 + x^k)^(a(k)/k). %F A308433 L.g.f.: x * exp(Sum_{k>=1} ( Sum_{d|k} (-1)^(k/d+1)*a(d) ) * x^k/k). %F A308433 a(n) = n * A004111(n). %t A308433 a[n_] := a[n] = SeriesCoefficient[x D[x Product[(1 + x^k)^(a[k]/k), {k, 1, n - 1}], x], {x, 0, n}]; Table[a[n], {n, 1, 33}] %t A308433 a[n_] := a[n] = n SeriesCoefficient[x Exp[Sum[Sum[(-1)^(k/d + 1) a[d], {d, Divisors[k]}] x^k/k, {k, 1, n - 1}]], {x, 0, n}]; Table[a[n], {n, 1, 33}] %t A308433 a[n_] := a[n] = Sum[a[n - k] Sum[(-1)^(k/d + 1) d a[d], {d, Divisors[k]}], {k, 1, n - 1}]/(n - 1); a[1] = 1; Table[n a[n], {n, 1, 33}] %Y A308433 Cf. A004111, A055544. %K A308433 nonn %O A308433 1,2 %A A308433 _Ilya Gutkovskiy_, May 26 2019