This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308438 #23 Jun 01 2019 11:10:21 %S A308438 11,223,31,401,547,619,773,8581,9109,10223,1129,12073,130553,14563, %T A308438 150011,161471,17257,18803,191189,20809,210557,225383,237091,240209, %U A308438 2509433,2613397,277429,283211,2901649,308153,313409,3204139,3300613,3419063,3507739,360091,3727313,3806347,3930061,4045421,41018911 %N A308438 a(n) is the smallest prime p whose decimal expansion begins with n and is such that the next prime is p+2n, or -1 if no such prime exists. %H A308438 Chai Wah Wu, <a href="/A308438/b308438.txt">Table of n, a(n) for n = 1..100</a> %e A308438 For n = 5, 547 is a prime starting with 5, and the next prime after 547 is 557 = 547 + 2*5. Since this is the least number with these properties, a(5) = 547. %p A308438 f:= proc(n) local d,p,q; %p A308438 for d from 0 do %p A308438 p:= nextprime(n*10^d-1); %p A308438 do %p A308438 q:= nextprime(p); %p A308438 if q - p = 2*n then return p fi; %p A308438 if q >= (n+1)*10^d then break fi; %p A308438 p:= q; %p A308438 od; %p A308438 od; %p A308438 end proc: %p A308438 map(f, [$1..50]); %o A308438 (Python) %o A308438 from sympy import nextprime %o A308438 def A308438(n): %o A308438 l, p = 1, nextprime(n) %o A308438 while True: %o A308438 q = nextprime(p) %o A308438 if q-p == 2*n: %o A308438 return p %o A308438 p = q %o A308438 if p >= (n+1)*l: %o A308438 l *= 10 %o A308438 p = nextprime(n*l) # _Chai Wah Wu_, May 31 2019 %Y A308438 Cf. A018800, A030665. %K A308438 nonn,base,look %O A308438 1,1 %A A308438 _J. M. Bergot_ and _Robert Israel_, May 30 2019