cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308440 Matrix product of triangle of Stirling numbers of second kind A008277 and square of unsigned Lah triangle A105278.

This page as a plain text file.
%I A308440 #15 Aug 11 2019 00:03:59
%S A308440 1,5,1,37,15,1,365,223,30,1,4501,3675,745,50,1,66605,68071,18450,1865,
%T A308440 75,1,1149877,1411515,479101,64750,3920,105,1,22687565,32512663,
%U A308440 13260030,2244501,181650,7322,140,1,503589781,825175275,393017185,79948050,8103711,436590,12558,180,1
%N A308440 Matrix product of triangle of Stirling numbers of second kind A008277 and square of unsigned Lah triangle A105278.
%C A308440 Also the number of k-dimensional flats of the extended Catalan arrangement of dimension n consisting of hyperplanes x_i - x_j = d (1 <= i < j <= n, -2 <= d <= 2).
%H A308440 Robert Gill, <a href="https://doi.org/10.1016/S0012-365X(97)00187-8">The number of elements in a generalized partition semilattice</a>, Discrete mathematics 186.1-3 (1998): 125-134.
%H A308440 N. Nakashima and S. Tsujie, <a href="https://arxiv.org/abs/1904.09748">Enumeration of Flats of the Extended Catalan and Shi Arrangements with Species</a>, arXiv:1904.09748 [math.CO], 2019.
%F A308440 E.g.f.: exp((exp(x)-1)*y/(3-2exp(x))).
%e A308440 Triangle begins:
%e A308440      1;
%e A308440      5,    1;
%e A308440     37,   15,   1;
%e A308440    365,  223,  30,  1;
%e A308440   4501, 3675, 745, 50, 1;
%e A308440   ...
%Y A308440 Cf. A008277, A105278, A050351 (first column), A109092 (row sums).
%K A308440 nonn,tabl
%O A308440 1,2
%A A308440 _Shuhei Tsujie_, May 27 2019