This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308442 #10 May 29 2019 05:25:54 %S A308442 5,13,41,61,181,313,421,1201,1741,1861,2521,3121,5101,7321,8581,9661, %T A308442 14281,16381,19801,36721,41761,60901,71821,83641,100801,106261,135721, %U A308442 139921,161881,163021,199081,205441,218461,273061,282001,337021,353641,388081,431521,491041,531481,539761,552301,571381 %N A308442 Primes of the form (p^k+1)/2 where p is prime and k > 1. %C A308442 The only primes of the form (p^k-1)/2 are A076481, since (p^k-1)/2 is divisible by (p-1)/2. %C A308442 k must be a power of 2, since if k has an odd divisor d>1, (p^k+1)/2 is divisible by (p^(k/d)+1)/2. %H A308442 Robert Israel, <a href="/A308442/b308442.txt">Table of n, a(n) for n = 1..10000</a> %e A308442 a(3) = 41 is in the sequence because 41 = (3^4 + 1)/2. %p A308442 N:= 10^6: # to get terms <= N %p A308442 p:= 2: %p A308442 Res:= NULL: %p A308442 do %p A308442 p:= nextprime(p); %p A308442 if p^2 >= 2*N then break fi; %p A308442 pk:= p; %p A308442 do %p A308442 pk:= pk^2; %p A308442 if pk >= 2*N then break fi; %p A308442 v:= (pk+1)/2; %p A308442 if isprime(v) then Res:= Res, v; %p A308442 fi; %p A308442 od %p A308442 od: %p A308442 sort([Res]); # _Robert Israel_, May 27 2019 %Y A308442 Cf. A076481. %Y A308442 Contains A067756. %K A308442 nonn %O A308442 1,1 %A A308442 _J. M. Bergot_ and _Robert Israel_, May 27 2019