cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308456 Numbers that cannot be written as a difference of 5-smooth numbers (A051037).

Original entry on oeis.org

281, 289, 353, 413, 421, 439, 443, 457, 469, 493, 541, 562, 563, 578, 581, 583, 641, 653, 661, 677, 683, 691, 701, 706, 707, 731, 733, 737, 751, 761, 769, 779, 787, 793, 803, 811, 817, 823, 826, 827, 829, 841, 842, 843, 853, 857, 867, 877, 878, 881, 883, 886
Offset: 1

Views

Author

Keywords

Comments

Terms were found by generating in sequential order the 5-smooth numbers up to some limit and collecting the differences. The first 1000 candidates k were then proved to be correct by showing that each of the following congruences holds:
{5} +- k !== {2,3} mod 205910575871,
{3} +- k !== {2,5} mod 220411358713,
{2} +- k !== {3,5} mod 3019333681,
where {a,b,...} represents the subgroup generated by a,b,... of the multiplicative subgroup modulo m. For a discussion iof this method of proof see A308247.

Examples

			281 = A308247(3) cannot be written as the difference of 5-smooth numbers. All smaller numbers can; for example, 277 = 3^4*5 - 2^7, 271 = 2^3*5^3 - 3^6.
		

Crossrefs

Cf. A051037 (5-smooth numbers).
Cf. numbers not the difference of p-smooth numbers for other values of p: A101082 (p=2), A290365 (p=3), A326318 (p=7), A326319 (p=11), A326320 (p=13).
Cf. A308247.

Programs

  • PARI
    \\ Computes the first N elements in the sequence.
    \\ At least the first 10000 are correct.
    N=100;
    \\computes the multiplicative subgroup generated
    \\by the elements of the vector L modulo m.
    SGR(L,m)={S=[1];for(l=1,length(L),z=znorder(Mod(L[l],m));T=[1];for(t=1,z,s=lift(Mod(L[l],m)^t);if(setsearch(S,s),break,T=concat(T,s);));for(t=1,length(T),S=Set(concat(S,lift(S*Mod(T[t],m))))));S}
    m1=205910575871; L1= SGR([2,3],m1); M1 = SGR([5],m1);
    m2=220411358713; L2= SGR([2,5],m2); M2 = SGR([3],m2);
    m3=  3019333681; L3= SGR([3,5],m3); M3 = SGR([2],m3);
    chkdif(k)={r=1;
       D=1;while(gcd(k/D,30)>1,D*=gcd(k/D,30));
       fordiv(D,d,
         if(vecmax(factor(k/d+1)[,1])<= 5 ,r=0);
         if(r,for(t=1,length(M1),
           if(setsearch(L1,(M1[t]+k/d)%m1),r=0;break)));
         if(r,for(t=1,length(M2),
           if(setsearch(L2,(M2[t]+k/d)%m2),r=0;break)));
         if(r,for(t=1,length(M3),
           if(setsearch(L3,(M3[t]+k/d)%m3),r=0;break)));
         if(r,for(t=1,length(M1),
           if(setsearch(L1,(M1[t]-k/d)%m1),r=0;break)));
         if(r,for(t=1,length(M2),
           if(setsearch(L2,(M2[t]-k/d)%m2),r=0;break)));
         if(r,for(t=1,length(M3),
           if(setsearch(L3,(M3[t]-k/d)%m3),r=0;break)));
         if(r==0, break)
       );
       r
    }
    for(k=1,m3,if(chkdif(k),print1(k,", ");if(N--==0, break))); print();