A308456 Numbers that cannot be written as a difference of 5-smooth numbers (A051037).
281, 289, 353, 413, 421, 439, 443, 457, 469, 493, 541, 562, 563, 578, 581, 583, 641, 653, 661, 677, 683, 691, 701, 706, 707, 731, 733, 737, 751, 761, 769, 779, 787, 793, 803, 811, 817, 823, 826, 827, 829, 841, 842, 843, 853, 857, 867, 877, 878, 881, 883, 886
Offset: 1
Keywords
Examples
281 = A308247(3) cannot be written as the difference of 5-smooth numbers. All smaller numbers can; for example, 277 = 3^4*5 - 2^7, 271 = 2^3*5^3 - 3^6.
Links
- Esteban Crespi de Valldaura, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
PARI
\\ Computes the first N elements in the sequence. \\ At least the first 10000 are correct. N=100; \\computes the multiplicative subgroup generated \\by the elements of the vector L modulo m. SGR(L,m)={S=[1];for(l=1,length(L),z=znorder(Mod(L[l],m));T=[1];for(t=1,z,s=lift(Mod(L[l],m)^t);if(setsearch(S,s),break,T=concat(T,s);));for(t=1,length(T),S=Set(concat(S,lift(S*Mod(T[t],m))))));S} m1=205910575871; L1= SGR([2,3],m1); M1 = SGR([5],m1); m2=220411358713; L2= SGR([2,5],m2); M2 = SGR([3],m2); m3= 3019333681; L3= SGR([3,5],m3); M3 = SGR([2],m3); chkdif(k)={r=1; D=1;while(gcd(k/D,30)>1,D*=gcd(k/D,30)); fordiv(D,d, if(vecmax(factor(k/d+1)[,1])<= 5 ,r=0); if(r,for(t=1,length(M1), if(setsearch(L1,(M1[t]+k/d)%m1),r=0;break))); if(r,for(t=1,length(M2), if(setsearch(L2,(M2[t]+k/d)%m2),r=0;break))); if(r,for(t=1,length(M3), if(setsearch(L3,(M3[t]+k/d)%m3),r=0;break))); if(r,for(t=1,length(M1), if(setsearch(L1,(M1[t]-k/d)%m1),r=0;break))); if(r,for(t=1,length(M2), if(setsearch(L2,(M2[t]-k/d)%m2),r=0;break))); if(r,for(t=1,length(M3), if(setsearch(L3,(M3[t]-k/d)%m3),r=0;break))); if(r==0, break) ); r } for(k=1,m3,if(chkdif(k),print1(k,", ");if(N--==0, break))); print();
Comments