cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308462 Expansion of e.g.f. exp(Sum_{k>=1} psi(k)*x^k/k), where psi() is the Dedekind psi function (A001615).

This page as a plain text file.
%I A308462 #9 Oct 31 2024 06:24:49
%S A308462 1,1,4,18,114,810,7560,71820,822780,10086300,139532400,2035618200,
%T A308462 33149655000,562448086200,10416443637600,202624824402000,
%U A308462 4207527414090000,91475485119018000,2114681171586984000,50821588411117524000,1289125346347418580000
%N A308462 Expansion of e.g.f. exp(Sum_{k>=1} psi(k)*x^k/k), where psi() is the Dedekind psi function (A001615).
%H A308462 Vaclav Kotesovec, <a href="/A308462/b308462.txt">Table of n, a(n) for n = 0..440</a>
%F A308462 log(a(n)/n!) ~ 2*sqrt(15*n)/Pi. - _Vaclav Kotesovec_, Oct 31 2024
%t A308462 nmax = 20; CoefficientList[Series[Exp[Sum[DirichletConvolve[j, MoebiusMu[j]^2, j, k] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
%t A308462 a[n_] := a[n] = Sum[Product[1 + Boole[PrimeQ[d]]/d, {d, Divisors[k]}] k! Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 20}]
%Y A308462 Cf. A001615, A301511, A318917.
%K A308462 nonn
%O A308462 0,3
%A A308462 _Ilya Gutkovskiy_, May 28 2019