This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308465 #20 Jul 02 2021 16:52:58 %S A308465 2,2,3,3,5,4,8,7,12,11,21,18,36,31,57,55,104,91,182,166,308,292,562, %T A308465 512,1009,928,1755,1697,3247,2972,5906,5555,10506,10099,19542,18280, %U A308465 36002,33895,64958,63045,121887,114032,226065,215377,412749,399334,778196,735941 %N A308465 Number of prefix normal palindromes of length n. %H A308465 Pamela Fleischmann, <a href="https://macau.uni-kiel.de/servlets/MCRFileNodeServlet/macau_derivate_00002273/diss.pdf">On Special k-Spectra, k-Locality, and Collapsing Prefix Normal Words</a>, Ph.D. Dissertation, Kiel University (Germany, 2021). %H A308465 Pamela Fleischmann, Mitja Kulczynski, and Dirk Nowotka, <a href="https://arxiv.org/abs/1905.11847">On Collapsing Prefix Normal Words</a>, arXiv:1905.11847 [cs.FL], 2019. %H A308465 Pamela Fleischmann, Mitja Kulczynski, Dirk Nowotka, and Danny Bøgsted Poulsen, <a href="https://doi.org/10.1007/978-3-030-40608-0_29">On Collapsing Prefix Normal Words</a>, Language and Automata Theory and Applications (LATA 2020) LNCS Vol. 12038, Springer, Cham, 412-424. %o A308465 (Python) %o A308465 from itertools import product %o A308465 def is_prefix_normal(w): %o A308465 for k in range(1, len(w)+1): %o A308465 weight0 = w[:k].count("1") %o A308465 for j in range(1, len(w)-k+1): %o A308465 weightj = w[j:j+k].count("1") %o A308465 if weightj > weight0: return False %o A308465 return True %o A308465 def bin_pals(digits): %o A308465 midrange = [[""], ["0", "1"]] %o A308465 for p in product("01", repeat=digits//2): %o A308465 left = "".join(p) %o A308465 for middle in midrange[digits%2]: %o A308465 yield left+middle+left[::-1] %o A308465 def a(n): %o A308465 return sum(is_prefix_normal(w) for w in bin_pals(n)) %o A308465 print([a(n) for n in range(1, 31)]) # _Michael S. Branicky_, Dec 19 2020 %Y A308465 Cf. A016116 (numbers of binary palindromes), A194850 (number of prefix normal words) %K A308465 nonn %O A308465 1,1 %A A308465 _Michel Marcus_, May 29 2019 %E A308465 a(31)-a(48) from _Michael S. Branicky_, Dec 19 2020