This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308470 #35 Jun 28 2025 12:55:58 %S A308470 0,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,1,0,0,2,0,0,0,1,0,1,0,0,1,0,2,0, %T A308470 1,0,1,1,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0,0,1,0,0,0,0,1,7,0,0,1,0,1,0, %U A308470 0,1,0,0,1,1,0,4,7,0,1,0,0,2,0,0,0,1,3,2,0,0,1,0,2,0,4 %N A308470 a(n) = (gcd(phi(n), 4*n^2 - 1) - 1)/2, where phi is A000010, Euler's totient function. %C A308470 2*a(n) + 1 = gcd(phi(2*n), (2*n - 1)*(2*n + 1)). %C A308470 a(A000040(n)) = A099618(n). %C A308470 Records occur at n = 1, 7, 22, 62, 172, 213, 372, 427, 473, ... %F A308470 a(A000040(n)) = A099618(n). %F A308470 a(A002476(n)) = 1. %F A308470 a(A045309(n)) = 0. %e A308470 a(7) = 1 because (gcd(phi(7), 4*7^2 - 1) - 1)/2 = (gcd(6, 195) - 1)/2 = (3 - 1)/2 = 1. %t A308470 Table[(GCD[EulerPhi[n], 4n^2 - 1] - 1)/2, {n, 100}] (* _Alonso del Arte_, May 30 2019 *) %o A308470 (Magma) [(Gcd(EulerPhi(n),4*n^2-1)-1)/2: n in [1..95]]; %o A308470 (Python) %o A308470 from math import gcd %o A308470 def A000010(n): %o A308470 if n == 1: %o A308470 return 1 %o A308470 d, m = 1, 0 %o A308470 while d < n: %o A308470 if gcd(d,n) == 1: %o A308470 m = m+1 %o A308470 d = d+1 %o A308470 return m %o A308470 n = 0 %o A308470 while n < 30: %o A308470 n = n+1 %o A308470 print(n,(gcd(A000010(n),4*n**2-1)-1)//2) # _A.H.M. Smeets_, Aug 18 2019 %Y A308470 Cf. A000010, A000040, A002476, A045309, A099618. %K A308470 nonn %O A308470 1,22 %A A308470 _Juri-Stepan Gerasimov_, May 29 2019