This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308484 #22 May 12 2021 03:56:29 %S A308484 1,1,0,1,1,0,1,3,-1,0,1,7,-1,-2,0,1,15,5,-26,9,0,1,31,35,-146,29,6,0, %T A308484 1,63,149,-650,-351,756,-155,0,1,127,539,-2642,-5251,9936,-1793,232,0, %U A308484 1,255,1805,-10346,-46071,83376,51421,-45744,3969,0 %N A308484 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. log(1 + Sum_{j>=1} j^k * x^j/j!). %H A308484 Seiichi Manyama, <a href="/A308484/b308484.txt">Antidiagonals n = 1..140, flattened</a> %F A308484 A(n,k) = n^k - Sum_{j=1..n-1} binomial(n-1,j)*j^k*A(n-j,k). %e A308484 Square array begins: %e A308484 1, 1, 1, 1, 1, 1, ... %e A308484 0, 1, 3, 7, 15, 31, ... %e A308484 0, -1, -1, 5, 35, 149, ... %e A308484 0, -2, -26, -146, -650, -2642, ... %e A308484 0, 9, 29, -351, -5251, -46071, ... %e A308484 0, 6, 756, 9936, 83376, 559656, ... %e A308484 0, -155, -1793, 51421, 1623439, 28735405, ... %t A308484 T[n_, k_] := T[n, k] = n^k - Sum[Binomial[n-1,j] * j^k * T[n-j,k], {j,1,n-1}]; Table[T[k, n - k], {n, 1, 10}, {k, 1, n}] // Flatten (* _Amiram Eldar_, May 12 2021 *) %Y A308484 Columns k=0..4 give A000007(n-1), A009306, A033464, A300452, A306325. %Y A308484 A(n,n) gives A320939. %K A308484 sign,tabl %O A308484 1,8 %A A308484 _Seiichi Manyama_, May 30 2019