cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308486 Numbers such that the sum of divisors divides the concatenation (in ascending order) of divisors.

This page as a plain text file.
%I A308486 #38 Sep 08 2022 08:46:21
%S A308486 1,2,6,10,40,98,112,120,1904,2680,4040,4128,5136,9920,12224,17900,
%T A308486 20880,27800,44160,55520,57121,62240,86866,158880,178120,1431808,
%U A308486 1773920,1825280,1918640,3751328,5452288,6749600,7262120,7446720,9916832,17777440,46168000,101829808
%N A308486 Numbers such that the sum of divisors divides the concatenation (in ascending order) of divisors.
%C A308486 Numbers k such that A000203(k) divides A037278(k). - _Michel Marcus_, Jun 02 2019.
%C A308486 Similar to A308533 where anti-divisors are considered.
%H A308486 Giovanni Resta, <a href="/A308486/b308486.txt">Table of n, a(n) for n = 1..50</a>
%e A308486 Divisors of 98 are 1, 2, 7, 14, 49, 98 and their sum is sigma(98) = 171. Then, 127144998 / 171 = 743538.
%p A308486 with(numtheory): P:=proc(q) local n; for n from 1 to q do if frac(parse(cat(op(sort([op(divisors(n))]))))/sigma(n))=0 then
%p A308486 print(n); fi; od; end: P(10^6);
%t A308486 Select[Range[10^6], Mod[FromDigits@ Flatten@ IntegerDigits[#], Total@ #] == 0 &@ Divisors@ # &] (* _Michael De Vlieger_, Jun 03 2019 *)
%o A308486 (Magma) k:=1; sol:=[];
%o A308486 for u in [1..10000000] do D:=Divisors(u); conc:=D[1];
%o A308486     for u1 in [2..#D] do a:=#Intseq(conc); a1:=#Intseq(D[u1]); conc:=10^a1*conc+D[u1];
%o A308486     end for;
%o A308486       if conc mod SumOfDivisors(u) eq 0 then sol[k]:=u; k:=k+1; end if;
%o A308486 end for;
%o A308486 sol; // _Marius A. Burtea_, Jun 01 2019
%o A308486 (PARI) concd(n) = my(d=divisors(n), s=""); fordiv(n, d, s = concat(s, Str(d))); eval(s); \\ A037278
%o A308486 isok(n) = (concd(n) % sigma(n)) == 0; \\ _Michel Marcus_, Jun 05 2019
%Y A308486 Cf. A000203, A037278, A069872, A224930, A240265, A308533.
%K A308486 nonn,base
%O A308486 1,2
%A A308486 _Paolo P. Lava_, May 31 2019
%E A308486 a(30)-a(38) from _Giovanni Resta_, May 31 2019