cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308495 a(n) is the position of the first occurrence of prime(n) in A027748.

This page as a plain text file.
%I A308495 #36 Jan 11 2025 18:50:28
%S A308495 2,3,5,8,13,16,22,25,32,41,45,55,62,66,73,83,94,98,109,117,120,132,
%T A308495 138,150,166,173,177,185,188,196,224,231,243,247,267,271,284,295,303,
%U A308495 315,327,331,353,356,364,368,394,419,426,430,439,452,456,475,487,500
%N A308495 a(n) is the position of the first occurrence of prime(n) in A027748.
%H A308495 Alois P. Heinz, <a href="/A308495/b308495.txt">Table of n, a(n) for n = 1..10000</a>
%F A308495 A027748(a(n)) = A000040(n).
%F A308495 a(n) = 1 + A013939(A000040(n)). - _Charlie Neder_, Jun 04 2019
%F A308495 a(n) = A082186(A000040(n)). - _Alois P. Heinz_, Jun 06 2019
%F A308495 a(n) = 1 + Sum_{k=1..n} floor(prime(n)/prime(k)). - _Benoit Cloitre_, Jan 11 2025
%e A308495 For n = 5: a(5) = 13, A027748(13) = A000040(5) = 11.
%p A308495 b:= proc(n) option remember; `if`(n=1, 1,
%p A308495       b(n-1) +nops(ifactors(n)[2]))
%p A308495     end:
%p A308495 a:= n-> b(ithprime(n)):
%p A308495 seq(a(n), n=1..60);  # _Alois P. Heinz_, Jun 06 2019
%t A308495 b[n_] := b[n] = If[n == 1, 1, b[n-1] + PrimeNu[n]];
%t A308495 a[n_] := b[Prime[n]];
%t A308495 Array[a, 60] (* _Jean-François Alcover_, Nov 27 2020, after _Alois P. Heinz_ *)
%o A308495 (Haskell)
%o A308495 -- expected to be part of A027748
%o A308495 a027748_list = concat (map a027748_row [1..])
%o A308495 minIdx [] _ = []
%o A308495 minIdx _ [] = []
%o A308495 minIdx (a:as) (b:bs)
%o A308495     | a == b = 1 : (map succ (minIdx as bs))
%o A308495     | otherwise = map succ (minIdx as (b:bs))
%o A308495 a308495_list = minIdx a027748_list a000040_list
%o A308495 a308495 n = a308495_list !! (n-1)
%o A308495 (PARI) a(n) = 1 + sum(k=1, prime(n), omega(k)); \\ _Michel Marcus_, Jun 05 2019
%Y A308495 Cf. A000040, A001221, A013939, A027748, A082186.
%K A308495 nonn
%O A308495 1,1
%A A308495 _Peter Dolland_, Jun 01 2019