This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308497 #30 May 12 2021 06:19:09 %S A308497 1,1,0,1,1,1,1,2,2,1,1,3,5,6,8,1,4,10,15,24,26,1,5,17,34,54,120,194,1, %T A308497 6,26,69,104,240,720,1142,1,7,37,126,204,200,1350,5040,9736,1,8,50, %U A308497 211,408,-330,-400,9450,40320,81384,1,9,65,330,794,-1704,-12510,-2800,78120,362880,823392 %N A308497 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. log(1 + Sum_{j>=1} binomial(j+k-1,k) * x^j/j). %C A308497 Column k > 2 is asymptotic to -2*(n-1)! * cos(n*arctan(sin(Pi/k)/(cos(Pi/k) - (k-1)^(1/k)))) / (1 + 1/(k-1)^(2/k) - 2*cos(Pi/k)/(k-1)^(1/k))^(n/2). - _Vaclav Kotesovec_, May 12 2021 %H A308497 Seiichi Manyama, <a href="/A308497/b308497.txt">Antidiagonals n = 1..140, flattened</a> %F A308497 A(n,k) = (1/k!) * ((n+k-1)! - Sum_{j=1..n-1} binomial(n-1,j) * (j+k-1)! * A(n-j,k)). %F A308497 E.g.f.: log(1 + (1/(1-x)^k - 1)/k). - _Vaclav Kotesovec_, May 12 2021 %e A308497 Square array begins: %e A308497 1, 1, 1, 1, 1, 1, ... %e A308497 0, 1, 2, 3, 4, 5, ... %e A308497 1, 2, 5, 10, 17, 26, ... %e A308497 1, 6, 15, 34, 69, 126, ... %e A308497 8, 24, 54, 104, 204, 408, ... %e A308497 26, 120, 240, 200, -330, -1704, ... %e A308497 194, 720, 1350, -400, -12510, -51696, ... %t A308497 T[n_, k_] := T[n, k] = ((n+k-1)! - Sum[Binomial[n-1,j] * (j+k-1)! * T[n-j,k], {j,1,n-1}])/k!; Table[T[k, n - k], {n, 1, 11}, {k, 1, n}] // Flatten (* _Amiram Eldar_, May 12 2021 *) %Y A308497 Columns k=0..5 give A089064, A000142(n-1), (-1)^(n+1) * A009383(n), A308499, A344217, A344218. %K A308497 sign,tabl %O A308497 1,8 %A A308497 _Seiichi Manyama_, Jun 01 2019