cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308498 Triangle read by rows where T(n,k), n>=1, 1<=k<=n is the number of (0,1)-matrices of size n with the first row and column sum = k and remaining sums = 1.

Original entry on oeis.org

1, 2, 1, 6, 5, 1, 24, 27, 10, 1, 120, 168, 88, 17, 1, 720, 1200, 800, 225, 26, 1, 5040, 9720, 7800, 2850, 486, 37, 1, 40320, 88200, 82320, 36750, 8232, 931, 50, 1, 362880, 887040, 940800, 493920, 136416, 20384, 1632, 65, 1, 3628800, 9797760, 11612160, 6985440
Offset: 1

Views

Author

Lars Blomberg, Jun 01 2019

Keywords

Examples

			For n=4, k=3:
1110  1101  1011  1110  1101  1011  1110  1101  1011  0111
1000  1000  1000  1000  1000  1000  0001  0010  0100  1000
1000  1000  1000  0001  0010  0100  1000  1000  1000  1000
0001  0010  0100  1000  1000  1000  1000  1000  1000  1000
so T(4,3)=10.
Triangle begins:
1
2,1
6,5,1
24,27,10,1
120,168,88,17,1
720,1200,800,225,26,1
5040,9720,7800,2850,486,37,1
40320,88200,82320,36750,8232,931,50,1
362880,887040,940800,493920,136416,20384,1632,65,1
3628800,9797760,11612160,6985440,2286144,423360,44928,2673,82,1
39916800,117936000,154224000,104328000,39372480,8678880,1144800,90450,4150,101,1
		

Crossrefs

Formula

T(n,k) = ((n-1)!)^2 * (k^2+n-k) / ((k!)^2 * (n-k)!).
T(n,1) = A000142(n).
T(n,2) = A138772(n).
T(n,n-1) = A002522(n-1).
T(n,n) = 1.