A308503 Square array T(n, k), n, k > 0, read by antidiagonals upwards: T(n, k) = f(g(n) | g(k)), where f is defined over the set of finite sequences of nonnegative integers with no trailing zero as f(e) = Sum_{k = 1..#e} prime(k)^e_k, g is the inverse of f, and | denotes concatenation.
1, 2, 2, 3, 6, 3, 4, 15, 10, 4, 5, 12, 21, 18, 5, 6, 35, 20, 75, 14, 6, 7, 30, 55, 36, 33, 30, 7, 8, 77, 42, 245, 28, 105, 22, 8, 9, 24, 91, 150, 65, 60, 39, 54, 9, 10, 45, 40, 847, 66, 385, 44, 375, 50, 10, 11, 70, 63, 72, 119, 210, 85, 108, 147, 42, 11, 12
Offset: 1
Examples
Array T(n, k) begins: n\k| 1 2 3 4 5 6 7 8 9 10 ---+---------------------------------------------------- 1| 1 2 3 4 5 6 7 8 9 10 2| 2 6 10 18 14 30 22 54 50 42 3| 3 15 21 75 33 105 39 375 147 165 4| 4 12 20 36 28 60 44 108 100 84 5| 5 35 55 245 65 385 85 1715 605 455 6| 6 30 42 150 66 210 78 750 294 330 7| 7 77 91 847 119 1001 133 9317 1183 1309 8| 8 24 40 72 56 120 88 216 200 168 9| 9 45 63 225 99 315 117 1125 441 495 10| 10 70 110 490 130 770 170 3430 1210 910
Programs
-
PARI
T(n,k) = { my (e=concat(apply(m -> my (f=factor(m), w=#f~, v=vector(if (w, primepi(f[w,1]), 0))); for (j=1, w, v[primepi(f[j,1])]=f[j,2]); v, [n,k]))); prod (i=1, #e, if (e[i], prime(i)^e[i], 1)) }
Formula
For any m, n, k > 0:
- T(m, T(n, k)) = T(T(m, n), k) (T is associative),
- T(n, 1) = T(1, n) = n (1 is a neutral element),
- T(2, k) = 2*A003961(k),
Comments