This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308524 #20 Sep 03 2019 18:40:04 %S A308524 0,0,1,2,11,40,166,658,2647,10592,42446,169972,680670,2725320, %T A308524 10910992,43678882,174843151,699839680,2801078662,11210671612, %U A308524 44866276906,179552951440,718539964132,2875389341332,11506176209206,46042099714240,184234059839116,737184620655368 %N A308524 Number of essentially 3-connected rooted toroidal maps with n edges. %H A308524 Michael De Vlieger, <a href="/A308524/b308524.txt">Table of n, a(n) for n = 0..1000</a> %H A308524 Nicolas Bonichon, Éric Fusy, Benjamin Lévêque, <a href="https://arxiv.org/abs/1907.04016">A bijection for essentially 3-connected toroidal maps</a>, arXiv:1907.04016 [math.CO], 2019. %F A308524 G.f.: A^2*(1+A)/((1+2*A)*(1-A)^2*(1+3*A)) where A=x*(1+A)^2. %F A308524 G.f.: x*(1 + 8*x + (2*x - 1)*sqrt(1 - 4*x))/(2*(2 + x)*(1 - 4*x)*(3 + 4*x)). - _Vaclav Kotesovec_, Jun 25 2019 %F A308524 a(n) ~ 2^(2*n - 3) / 3. - _Vaclav Kotesovec_, Jun 25 2019 %p A308524 dev_A := 0; n := 20; dev_A := series(RootOf(A-x*(1+A)^2, A), x = 0, n+1); %p A308524 seq(coeff(series(subs(A = dev_A, A^2*(1+A)/((1+2*A)*(1-A)^2*(1+3*A))), x, n+1), x, k), k = 0 .. n); %p A308524 # second Maple program: %p A308524 a:= proc(n) option remember; `if`(n<6, [0, 0, 1, 2, 11, 40][n+1], %p A308524 ((37*n^2-258*n+401)*a(n-1)-6*(2*n^2-25*n+88)*a(n-2) %p A308524 -48*(3*n^2-23*n+45)*a(n-3)-32*(n-4)*(2*n-7)*a(n-4)) %p A308524 /((6*(n-1))*(n-5))) %p A308524 end: %p A308524 seq(a(n), n=0..30); # _Alois P. Heinz_, Jun 07 2019 %t A308524 CoefficientList[Series[x*(1 + 8*x + (2*x - 1)*Sqrt[1 - 4*x])/(2*(2 + x)*(1 - 4*x)*(3 + 4*x)), {x, 0, 30}], x] (* _Vaclav Kotesovec_, Jun 25 2019 *) %Y A308524 Cf. A308523, A308526, A289208, A006422. %K A308524 nonn %O A308524 0,4 %A A308524 _Nicolas Bonichon_, Jun 05 2019