This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308527 #13 Jun 20 2019 03:04:32 %S A308527 321,432,121110,171615,343332,118117116,232231230,334333332, %T A308527 333433333332,452245214520,333343333333332,333334333333333332, %U A308527 333333433333333333332,333333343333333333333332 %N A308527 Numbers that, for some x, are the concatenation of x+2, x+1 and x and are divisible by at least two of x+2, x+1 and x. %C A308527 For each d>=1, (10^(3*d)-4)/3+10^(2*d) (the concatenation of x+2, x+1 and x where x = (10^d-4)/3) is in the sequence, being divisible by x+1 and x+3. Thus the sequence is infinite. %C A308527 It appears that a(n) is of the form (10^(3*d)-4)/3+10^(2*d) for n >= 11. - _Chai Wah Wu_, Jun 19 2019 %H A308527 Chai Wah Wu, <a href="/A308527/b308527.txt">Table of n, a(n) for n = 1..56</a> %e A308527 232231230 is the concatenation of 232, 231 and 230, and is divisible by 231 and 230, so it is in the sequence. %p A308527 f:= proc(x) %p A308527 local t1, t2, q, a, b; %p A308527 t1:= 10^length(x); %p A308527 t2:= t1*10^length(x+1); %p A308527 q:= x*(1+t1+t2)+2*t2+t1; %p A308527 a:= (q/x)::integer; %p A308527 b:= (q/(x+1))::integer; %p A308527 if a and b then return q elif not(a) and not(b) then return NULL fi; %p A308527 if (q/(x+2))::integer then q else NULL fi %p A308527 end proc: %p A308527 map(f, [$1..10^8]); %Y A308527 Cf. A306643. %Y A308527 Subsequence of A127424. %K A308527 nonn,base %O A308527 1,1 %A A308527 _J. M. Bergot_ and _Robert Israel_, Jun 05 2019