A308547 Number of ways to write n as a^2 + 2*b^2 + 2^c*3^d, where a,b,c,d are nonnegative integers.
1, 2, 3, 4, 4, 4, 4, 4, 5, 7, 5, 8, 6, 5, 6, 4, 6, 8, 7, 10, 8, 6, 4, 8, 8, 8, 10, 10, 6, 9, 6, 4, 10, 9, 11, 14, 8, 8, 9, 10, 8, 11, 8, 9, 13, 6, 5, 8, 9, 10, 11, 13, 7, 14, 8, 10, 13, 9, 11, 16, 7, 7, 13, 4, 12, 12, 10, 12, 10, 13, 5, 14, 13, 9, 17, 12, 7, 12, 6, 10
Offset: 1
Keywords
Examples
a(1) = 1 with 1 = 0^2 + 2*0^2 + 2^0*3^0. a(2) = 2 with 2 = 0^2 + 2*0^2 + 2^1*3^0 = 1^2 + 2*0^2 + 2^0*3^0. a(1117) = 2 with 1117 = 10^2 + 2*12^2 + 2^0*3^6 = 19^2 + 2*18^2 + 2^2*3^3. a(78373) = 1 with 78373 = 271^2 + 2*48^2 + 2^2*3^4. a(448159) = 1 with 448159 = 610^2 + 2*195^2 + 2^0*3^2. a(82816213) = 2 with 82816213 = 4353^2 + 2*5651^2 + 2^1*3^0 = 3681^2 + 2*5885^2 + 2^1*3^0. a(90685253) = 2 with 90685253 = 7007^2 + 2*4560^2 + 2^2*3^0 = 607^2 + 2*6720^2 + 2^2*3^0.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]; tab={};Do[r=0;Do[If[SQ[n-3^k*2^m-2x^2],r=r+1],{k,0,Log[3,n]},{m,0,Log[2,n/3^k]},{x,0,Sqrt[(n-3^k*2^m)/2]}];tab=Append[tab,r],{n,1,80}];Print[tab]
Comments