A308558 Triangle read by rows where T(n,k) is the number of integer partitions of n > 0 into powers of k > 0.
1, 1, 2, 1, 2, 2, 1, 4, 2, 2, 1, 4, 2, 2, 2, 1, 6, 3, 2, 2, 2, 1, 6, 3, 2, 2, 2, 2, 1, 10, 3, 3, 2, 2, 2, 2, 1, 10, 5, 3, 2, 2, 2, 2, 2, 1, 14, 5, 3, 3, 2, 2, 2, 2, 2, 1, 14, 5, 3, 3, 2, 2, 2, 2, 2, 2, 1, 20, 7, 4, 3, 3, 2, 2, 2, 2, 2, 2, 1, 20, 7, 4, 3, 3, 2
Offset: 1
Examples
Triangle begins: 1 1 2 1 2 2 1 4 2 2 1 4 2 2 2 1 6 3 2 2 2 1 6 3 2 2 2 2 1 10 3 3 2 2 2 2 1 10 5 3 2 2 2 2 2 1 14 5 3 3 2 2 2 2 2 1 14 5 3 3 2 2 2 2 2 2 1 20 7 4 3 3 2 2 2 2 2 2 1 20 7 4 3 3 2 2 2 2 2 2 2 Row n = 6 counts the following partitions: (111111) (42) (33) (411) (51) (6) (222) (3111) (111111) (111111) (111111) (411) (111111) (2211) (21111) (111111)
Crossrefs
Programs
-
Mathematica
Table[If[k==1,1,Length[Select[IntegerPartitions[n],And@@(IntegerQ[Log[k,#]]&/@#)&]]],{n,10},{k,n}]