This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308564 #10 Aug 04 2021 09:36:33 %S A308564 1,2,6,22,90,404,1974,10366,57864,341690,2134022,14104624,98498972, %T A308564 723664482,5561589508,44473028634,368602225688,3159852790392, %U A308564 27997141025686,256410638073082,2428063270357748,23774001479212114,240580239864321604,2513553050765310236 %N A308564 Expansion of e.g.f. Sum_{k>=1} phi(k)*(exp(x) - 1)^k/k!, where phi = Euler totient function (A000010). %C A308564 Stirling transform of A000010. %H A308564 Alois P. Heinz, <a href="/A308564/b308564.txt">Table of n, a(n) for n = 1..575</a> %F A308564 G.f.: Sum_{k>=1} phi(k)*x^k / Product_{j=1..k} (1 - j*x). %F A308564 a(n) = Sum_{k=1..n} Stirling2(n,k)*phi(k). %p A308564 b:= proc(n, m) option remember; uses numtheory; %p A308564 `if`(n=0, phi(m), m*b(n-1, m)+b(n-1, m+1)) %p A308564 end: %p A308564 a:= n-> b(n, 0): %p A308564 seq(a(n), n=1..24); # _Alois P. Heinz_, Aug 04 2021 %t A308564 nmax = 24; Rest[CoefficientList[Series[Sum[EulerPhi[k] (Exp[x] - 1)^k/k!, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!] %t A308564 nmax = 24; Rest[CoefficientList[Series[Sum[EulerPhi[k] x^k/Product[(1 - j x), {j, 1, k}], {k, 1, nmax}], {x, 0, nmax}], x]] %t A308564 Table[Sum[StirlingS2[n, k] EulerPhi[k], {k, 1, n}], {n, 1, 24}] %Y A308564 Cf. A000010, A306988. %K A308564 nonn %O A308564 1,2 %A A308564 _Ilya Gutkovskiy_, Jun 07 2019