This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308605 #40 Nov 29 2024 15:07:02 %S A308605 2,4,4,8,4,13,4,16,8,16,4,29,4,16,16,32,4,40,4,43,16,16,4,61,8,16,16, %T A308605 57,4,73,4,64,16,16,16,92,4,16,16,91,4,97,4,64,56,16,4,125,8,64,16,64, %U A308605 4,121,16,121,16,16,4,169,4,16,60,128,16,145,4,64,16,143,4,196,4,16,64,64,16,169,4,187,32,16,4,225 %N A308605 Number of distinct subset sums of the subsets of the set of divisors of n. Here 0 (as the sum of an empty subset) is included in the count. %C A308605 Conjecture: When the terms are sorted and the duplicates deleted a supersequence of A030058 is obtained. Note that A030058 is a result of the same operation applied to A030057. %C A308605 a(p^k) = 2^(k+1) if p is prime, and a(n) = 2n+1 if n is an even perfect number. - _David Radcliffe_, Dec 22 2022 %H A308605 Antti Karttunen, <a href="/A308605/b308605.txt">Table of n, a(n) for n = 1..10000</a> %F A308605 a(n) = 1 + A119347(n). - _Rémy Sigrist_, Jun 10 2019 %e A308605 The subsets of the set of divisors of 6 are {{},{1},{2},{3},{6},{1,2},{1,3},{1,6},{2,3},{2,6},{3,6},{1,2,3},{1,2,6},{1,3,6},{2,3,6},{1,2,3,6}}, with the following sums {0,1,2,3,6,3,4,7,5,8,9,6,9,10,11,12}, of which 13 are distinct. Therefore, a(6)=13. %p A308605 A308605 := proc(n) %p A308605 # set of the divisors %p A308605 dvs := numtheory[divisors](n) ; %p A308605 # set of all the subsets of the divisors %p A308605 pdivs := combinat[powerset](dvs) ; %p A308605 # the set of the sums in subsets of divisors %p A308605 dvss := {} ; %p A308605 # loop over all subsets of divisors %p A308605 for s in pdivs do %p A308605 # compute sum over entries of the subset %p A308605 sps := add(d,d=s) ; %p A308605 # add sum to the realized set of sums %p A308605 dvss := dvss union {sps} ; %p A308605 end do: %p A308605 # count number of distinct entries (distinct sums) %p A308605 nops(dvss) ; %p A308605 end proc: %p A308605 seq(A308605(n),n=1..20) ; # _R. J. Mathar_, Dec 20 2022 %t A308605 f[n_]:=Length[Union[Total/@Subsets[Divisors[n]]]]; f/@Range[100] %o A308605 (Python) %o A308605 from sympy import divisors %o A308605 def a308605(n): %o A308605 s = set([0]) %o A308605 for d in divisors(n): %o A308605 s = s.union(set(x + d for x in s)) %o A308605 return len(s) # _David Radcliffe_, Dec 22 2022 %o A308605 (PARI) A308605(n) = { my(c=[0]); fordiv(n,d, c = Set(concat(c,vector(#c,i,c[i]+d)))); (#c); }; \\ (after _Chai Wah Wu_'s Python-code in A119347, but see also above) - _Antti Karttunen_, Nov 29 2024 %o A308605 (PARI) A308605(n) = { my(p=1); fordiv(n, d, p *= (1 + 'x^d)); sum(i=0,poldegree(p),(0<polcoeff(p, i))); }; \\ _Antti Karttunen_, Nov 29 2024 %Y A308605 One more than A119347. %Y A308605 Cf. A030057, A030058, A083207 (positions of odd terms), A179527 (parity of terms). %K A308605 nonn %O A308605 1,1 %A A308605 _Ivan N. Ianakiev_, Jun 10 2019 %E A308605 Definition clarified and more terms added by _Antti Karttunen_, Nov 29 2024