A308612 Moments of the ternary Cantor measure (numerators).
1, 1, 3, 5, 87, 31, 10215, 2675, 2030721, 3791353, 21043039755, 3617048975, 456510966890031, 66989072882759, 4380916942893971361, 8410761713598485675, 4355410489470724905492213, 2471070675390828342358441, 8410576873515817323688553597445
Offset: 0
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..97
- David H. Bailey, Jonathan M. Borwein, Richard E. Crandall, and Michael G. Rose, Expectations on fractal sets, Applied Mathematics and Computation, Vol. 220 (2013), pp. 695-721, alternative link.
- Steven N. Harding, Alexander W. N. Riasanovsky, Moments of the weighted Cantor measures, arXiv:1908.05358 [math.FA], 2019.
- Math Stack Exchange, Integrating f(x) = x for x in C, the Cantor set, with respect to a certain measure
Crossrefs
Cf. A308613 (denominators).
Programs
-
Mathematica
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, j]*2^(n - j - 1)*a[j], {j, 0, n - 1}]/(3^n - 1); Table[Numerator[a[i]], {i, 0, 19}] (* Amiram Eldar, Aug 03 2019 *)
-
Sage
def am(m, alpha): N = len(alpha) am = [1] for a in [1..m]: mm = 0 for k in [0..N-1]: for r in [0..a-1]: mm += alpha[k]*binomial(a, r)*k^(a-r)*am[r] mm /= (N^a-1) am.append(mm) return am [p.numerator() for p in am(15, (1/2, 0, 1/2))]
Extensions
More terms from Amiram Eldar, Aug 03 2019
Comments