This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308617 #81 Jun 20 2024 18:50:13 %S A308617 140,147,621,630,2184,2197,2511,2520,3230,3249,3740,3757,4180,4199, %T A308617 5750,5775,9975,10000,19635,19652,26600,26625,30600,30625,40040,40053, %U A308617 43355,43384,45900,45927,50232,50255,50600,50625,64515,64538,67320,67337,68400,68425 %N A308617 Integers i such that the equation A088387(i) = p has N > 1 solutions in the interval prevprime(i)..nextprime(i). %C A308617 Conjecture: N = 2. Checked up to 10^8. %H A308617 Robert Israel, <a href="/A308617/b308617.txt">Table of n, a(n) for n = 1..1148</a> %e A308617 Between primes 139 and 149: A088387(140) = A088387(147) = 7. %e A308617 Between primes 619 and 631: A088387(621) = A088387(630) = 3. %e A308617 Between primes 8752871 and 8752987: A088387(8752880) = A088387(8752951) = 71 and A088387(8752926) = A088387(8752967) = 41. %e A308617 Between primes 33622489 and 33622607: A088387(33622507) = A088387(33622600) = 31. %p A308617 A88387:= proc(n) local F,j; %p A308617 F:= ifactors(n)[2]; %p A308617 F[max[index](map(t -> t[1]^t[2],F)),1] %p A308617 end proc: %p A308617 R:= NULL: count:= 0: %p A308617 q:= 2: %p A308617 while count < 100 do %p A308617 p:= nextprime(q); %p A308617 L:= [$(q+1)..(p-1)]; %p A308617 V:= map(A88387,L); %p A308617 S:= select(t -> numboccur(t,V) > 1, convert(V,set)); %p A308617 J:= select(i -> member(V[i],S),[$1..p-q-1]); %p A308617 count:= count+nops(J); %p A308617 R:= R, op(L[J]); %p A308617 q:= p; %p A308617 od: %p A308617 R; # _Robert Israel_, Jun 20 2024 %t A308617 A088387[n_] := MaximalBy[FactorInteger[n], Power @@ # &][[1, 1]]; A034699[n_] := If[n == 1, 1, Max[#[[1]]^#[[2]] & /@ FactorInteger@n]]; t = Table[Table[A088387[n],{n, Prime[k], Prime[k + 1]-1}], {k, 2,12000} ]; duplicates = Select[t, Not@DuplicateFreeQ[#] &]; a = {}; pickFrom[list_] := Do[If[Count[list, list[[k]]] > 1 , a = Append[a, k - 1 + First[list]]], {k, 2, Length[list]}]; pickFrom /@ duplicates; a (* _Jianglin Luo_, Dec 01 2023 *) %o A308617 (MATLAB) %o A308617 n = 0; ip = 0; %o A308617 for m = 1:oo %o A308617 if isprime(m) ip = ip + 1; end %o A308617 if A088387(m) == m & m > 1 %o A308617 for i = A007917(ip):A007918(ip) %o A308617 for j = A007917(ip):A007918(ip) %o A308617 if A088387(i) == A088387(j) & i ~= j %o A308617 n = n + 1; a(n) = i; %o A308617 end %o A308617 end %o A308617 end %o A308617 end %o A308617 end %o A308617 (PARI) plppf(n) = if(1==n, 1, my(f=factor(n), p=0); isprimepower(vecmax(vector(#f[, 1], i, f[i, 1]^f[i, 2])), &p); (p)); \\ A088387 %o A308617 lista(nn) = {for (n=1, nn, my(p = prime(n), q = nextprime(p+1)); my(v = vector(q-p-1, k, plppf(k+p)), vs = vecsort(v,,8)); if (#v != #vs, for (i=1, #vs, my(vx = select(x->(x==vs[i]), v, 1)); if (#vx > 1, for (j=1, #vx, print1(p+vx[j], ", "));););););} \\ _Michel Marcus_, Jun 27 2019 %Y A308617 Cf. A007917 (prevprime), A007918 (nextprime), A088387, A034699, A308752 (analog), A038610. %K A308617 nonn %O A308617 1,1 %A A308617 _I. V. Serov_ & _Michel Marcus_, Jun 25 2019