This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308618 #26 Oct 08 2022 09:45:20 %S A308618 1,2,4,6,12,30,36,60,180,420,1260,4620,6300,13860,69300,180180,900900, %T A308618 3063060,15315300,58198140,290990700,1338557220,2036934900,6692786100, %U A308618 38818159380,46849502700,194090796900,1358635578300,6016814703900,42117702927300,222622144044300 %N A308618 Cubefree superabundant numbers: cubefree numbers (A004709) k such that sigma(k)/k > sigma(j)/j for all cubefree numbers j < k. %C A308618 Erdős and Nicolas named these numbers "nombres sans cube superabondants". %C A308618 All the terms are either primorials (A002110) or products of two primorials. %C A308618 Also numbers m such that A073185(m)/m > A073185(k)/k for all k < m. - _Amiram Eldar_, Oct 08 2022 %H A308618 Amiram Eldar, <a href="/A308618/b308618.txt">Table of n, a(n) for n = 1..1307</a> %H A308618 Paul Erdős and Jean-Louis Nicolas, <a href="https://doi.org/10.24033/bsmf.1793">Répartition des nombres superabondants</a>", Bulletin de la Société Mathématique de France, Vol. 103 (1975), pp. 65-90. See section 5, p. 83. %t A308618 cubeFreeQ[n_] := Max @ FactorInteger[n][[;;, 2]] < 3; s = {}; rm = 0; Do[If[ !cubeFreeQ[n], Continue[]]; r = DivisorSigma[1, n]/n; If[r > rm, rm = r; AppendTo[s, n]], {n, 1, 10^6}]; s %Y A308618 Cf. A000203, A002110, A004394, A004709, A073185. %Y A308618 Subsequence of A025487 and A220423. %K A308618 nonn %O A308618 1,2 %A A308618 _Amiram Eldar_, Aug 21 2019