A308621 Number of ways to write n as a*(a+1)/2 + b*(b+1)/2 + 2^c*5^(3d) with a,b,c,d nonnegative integers.
1, 2, 2, 3, 3, 2, 3, 5, 2, 4, 4, 3, 3, 5, 3, 3, 6, 4, 4, 5, 2, 6, 5, 4, 4, 5, 2, 4, 6, 3, 4, 8, 5, 3, 5, 4, 5, 8, 5, 5, 4, 3, 5, 7, 4, 5, 8, 4, 2, 8, 2, 6, 7, 4, 3, 4, 6, 5, 8, 4, 4, 6, 5, 5, 5, 5, 6, 8, 4, 6, 7, 4, 6, 10, 4, 4, 7, 5, 2, 10, 4, 7, 7, 4, 8, 4, 4, 7, 8, 2, 4, 9, 5, 5, 9, 5, 5, 7, 5, 5
Offset: 1
Keywords
Examples
a(1) = 1 with 1 = 0*1/2 + 0*1/2 + 2^0*5^(3*0). a(78210) = 1 with 78210 = 85*86/2 + 385*386/2 + 2*5^3.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
TQ[n_]:=TQ[n]=IntegerQ[Sqrt[8n+1]]; tab={};Do[r=0;Do[If[TQ[n-5^(3k)*2^m-x(x+1)/2],r=r+1],{k,0,Log[5,n]/3},{m,0,Log[2,n/5^(3k)]},{x,0,(Sqrt[4(n-5^(3k)*2^m)+1]-1)/2}];tab=Append[tab,r],{n,1,100}];Print[tab]
Comments