This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308630 #11 Oct 15 2024 16:48:53 %S A308630 1,2,2,3,2,3,4,6,6,4,5,6,9,12,5,6,12,18,24,20,6,7,12,27,40,50,30,7,8, %T A308630 20,36,68,100,90,42,8,9,20,54,108,175,210,147,56,9,10,30,72,160,290, %U A308630 420,392,224,72,10,11,30,90,224,460,756,882,672,324,90,11,12,42,120,312,700,1272,1764,1680,1080,450,110 %N A308630 Triangle T(n,k) read by rows: the sum of all smallest parts among all k-compositions of n. %H A308630 Knopfmacher, Arnold; Munagi, Augustine O. <a href="https://doi.org/10.1007/978-3-642-30979-3_11">Smallest parts in compositions</a>, Kotsireas, Ilias S. (ed.) et al., Advances in combinatorics. 3rd Waterloo workshop on computer algebra (WWCA, W80) 2011, Waterloo, Canada, May 26-29, 2011. Berlin: Springer. 197-207 (2013). %F A308630 T(n,k) = k*sum_{j=1..floor(n/k)} binomial(n-(j-1)*k-2, k-2). %e A308630 The triangle starts in row n=1 with columns 1<=k<=n as: %e A308630 1; %e A308630 2, 2; %e A308630 3, 2, 3; %e A308630 4, 6, 6, 4; %e A308630 5, 6, 9, 12, 5; %e A308630 6, 12, 18, 24, 20, 6; %e A308630 7, 12, 27, 40, 50, 30, 7; %e A308630 8, 20, 36, 68,100, 90, 42, 8; %e A308630 9, 20, 54,108,175,210,147, 56, 9; %e A308630 10, 30, 72,160,290,420,392,224, 72, 10; %e A308630 ... %p A308630 A308630 := proc(n,k) %p A308630 add(j*binomial(n-(j-1)*k-2,k-2),j=1..floor(n/k)) ; %p A308630 %*k ; %p A308630 end proc: %Y A308630 Cf. A097941 (number of smallest parts), A002378 (k=2), A144677 (column k=3 divided by 3), A097940 (row sums). %K A308630 nonn,easy,tabl %O A308630 1,2 %A A308630 _R. J. Mathar_, Jun 12 2019