This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308632 #35 Feb 06 2022 14:59:23 %S A308632 0,0,2,3,4,6,7,10,12,15,19 %N A308632 Largest aggressor for the maximum number of peaceable coexisting queens as given in A250000. %C A308632 Sequence A250000 is the maximum number m such that m white queens and m black queens can coexist on an n X n chessboard without attacking each other. However, one of the players can have more than m queens, being a bigger 'aggressor' in peaceful times. The current sequence lists the largest aggressors with k queens when the opponent has m queens for an n X n chessboard (from A250000). %C A308632 The idea and name of the sequence was first mentioned by _Bob Selcoe_ on May 29 2019 in the comment section of A250000. %C A308632 The sequence was initially generated by _Roy van Rijn_ using a SAT solver and is optimal for n=1 to n=11 (as of June 12 2019). %C A308632 _Bob Selcoe_ has shown it is possible to construct a 15 X 15 board with 32 queens of one color and 34 of another but this hasn't yet been proved to be optimal. %C A308632 Many of these values have already been obtained by Stephen Ainley in 1977 (see links). %C A308632 Conjecture: a(n) - A250000(n) <= 2 for all n. - _Dmitry Kamenetsky_, Oct 14 2019 %H A308632 Stephen Ainley, <a href="/A250000/a250000_6.png">Mathematical Puzzles</a>, London: G Bell & Sons, 1977. [Annotated scan of a portion of page 32] %H A308632 Dmitry Kamenetsky, <a href="/A308632/a308632_1.txt">Best known solutions for 12 <= n <= 30</a>. %F A308632 a(n) >= A250000(n). %e A308632 Examples (omitted cases where the largest aggressor is equal to A250000): %e A308632 n=1: white queens 0, black queens 0 %e A308632 n=2: white queens 0, black queens 0 %e A308632 n=3: white queens 1, black queens 2 %e A308632 n=4: white queens 2, black queens 3 %e A308632 +---------+ %e A308632 | . W . W | %e A308632 | . . . . | %e A308632 | B . B . | %e A308632 | . . B . | %e A308632 +---------+ %e A308632 n=5: white queens 4, black queens 4 %e A308632 n=6: white queens 5, black queens 6 %e A308632 +-------------+ %e A308632 | . W . . . . | %e A308632 | W . W . . . | %e A308632 | . . . . B B | %e A308632 | . . . B . B | %e A308632 | W W . . . . | %e A308632 | . . . B . B | %e A308632 +-------------+ %e A308632 n=7: white queens 7, black queens 7 %e A308632 n=8: white queens 9, black queens 10 %e A308632 +-----------------+ %e A308632 | . . . B B B . . | %e A308632 | W W . . . . . . | %e A308632 | . . . B . . . B | %e A308632 | . . . . . . B B | %e A308632 | . . . . . B B B | %e A308632 | . W W . . . . . | %e A308632 | W W W . . . . . | %e A308632 | W W . . . . . . | %e A308632 +-----------------+ %e A308632 n=9: white queens 12, black queens 12 %e A308632 n=10: white queens 14, black queens 15 %e A308632 +---------------------+ %e A308632 | . . B B . . . . B B | %e A308632 | . . B B . . . B B B | %e A308632 | . . B . . . . B B B | %e A308632 | . . . . . . . B B . | %e A308632 | . W . . . . . . . . | %e A308632 | W W . . . . . . . . | %e A308632 | W W . . . . . . . . | %e A308632 | W . . . . W W . . . | %e A308632 | . . . . W W W . . . | %e A308632 | . . . . W W W . . . | %e A308632 +---------------------+ %e A308632 n=11: white queens 17, black queens 19 %e A308632 +-----------------------+ %e A308632 | W . W . . . . . W . W | %e A308632 | . . . . B B B . . . . | %e A308632 | W . W . . . . . W . W | %e A308632 | . . . . B . B . . . . | %e A308632 | . B . . . B . B . B . | %e A308632 | . B . . B . B . . B . | %e A308632 | . B . . . B . B . B . | %e A308632 | . . . . B . B . . . . | %e A308632 | W . W . . . . . W . W | %e A308632 | . . . W . . . . . . . | %e A308632 | W . W . . . . . W . W | %e A308632 +-----------------------+ %Y A308632 Cf. A250000. %K A308632 nonn,hard,more %O A308632 1,3 %A A308632 _Roy van Rijn_, Jun 12 2019