cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308632 Largest aggressor for the maximum number of peaceable coexisting queens as given in A250000.

This page as a plain text file.
%I A308632 #35 Feb 06 2022 14:59:23
%S A308632 0,0,2,3,4,6,7,10,12,15,19
%N A308632 Largest aggressor for the maximum number of peaceable coexisting queens as given in A250000.
%C A308632 Sequence A250000 is the maximum number m such that m white queens and m black queens can coexist on an n X n chessboard without attacking each other. However, one of the players can have more than m queens, being a bigger 'aggressor' in peaceful times. The current sequence lists the largest aggressors with k queens when the opponent has m queens for an n X n chessboard (from A250000).
%C A308632 The idea and name of the sequence was first mentioned by _Bob Selcoe_ on May 29 2019 in the comment section of A250000.
%C A308632 The sequence was initially generated by _Roy van Rijn_ using a SAT solver and is optimal for n=1 to n=11 (as of June 12 2019).
%C A308632 _Bob Selcoe_ has shown it is possible to construct a 15 X 15 board with 32 queens of one color and 34 of another but this hasn't yet been proved to be optimal.
%C A308632 Many of these values have already been obtained by Stephen Ainley in 1977 (see links).
%C A308632 Conjecture: a(n) - A250000(n) <= 2 for all n. - _Dmitry Kamenetsky_, Oct 14 2019
%H A308632 Stephen Ainley, <a href="/A250000/a250000_6.png">Mathematical Puzzles</a>, London: G Bell & Sons, 1977. [Annotated scan of a portion of page 32]
%H A308632 Dmitry Kamenetsky, <a href="/A308632/a308632_1.txt">Best known solutions for 12 <= n <= 30</a>.
%F A308632 a(n) >= A250000(n).
%e A308632 Examples (omitted cases where the largest aggressor is equal to A250000):
%e A308632   n=1: white queens 0, black queens 0
%e A308632   n=2: white queens 0, black queens 0
%e A308632   n=3: white queens 1, black queens 2
%e A308632   n=4: white queens 2, black queens 3
%e A308632   +---------+
%e A308632   | . W . W |
%e A308632   | . . . . |
%e A308632   | B . B . |
%e A308632   | . . B . |
%e A308632   +---------+
%e A308632   n=5: white queens 4, black queens 4
%e A308632   n=6: white queens 5, black queens 6
%e A308632   +-------------+
%e A308632   | . W . . . . |
%e A308632   | W . W . . . |
%e A308632   | . . . . B B |
%e A308632   | . . . B . B |
%e A308632   | W W . . . . |
%e A308632   | . . . B . B |
%e A308632   +-------------+
%e A308632   n=7: white queens 7, black queens 7
%e A308632   n=8: white queens 9, black queens 10
%e A308632   +-----------------+
%e A308632   | . . . B B B . . |
%e A308632   | W W . . . . . . |
%e A308632   | . . . B . . . B |
%e A308632   | . . . . . . B B |
%e A308632   | . . . . . B B B |
%e A308632   | . W W . . . . . |
%e A308632   | W W W . . . . . |
%e A308632   | W W . . . . . . |
%e A308632   +-----------------+
%e A308632   n=9: white queens 12, black queens 12
%e A308632   n=10: white queens 14, black queens 15
%e A308632   +---------------------+
%e A308632   | . . B B . . . . B B |
%e A308632   | . . B B . . . B B B |
%e A308632   | . . B . . . . B B B |
%e A308632   | . . . . . . . B B . |
%e A308632   | . W . . . . . . . . |
%e A308632   | W W . . . . . . . . |
%e A308632   | W W . . . . . . . . |
%e A308632   | W . . . . W W . . . |
%e A308632   | . . . . W W W . . . |
%e A308632   | . . . . W W W . . . |
%e A308632   +---------------------+
%e A308632   n=11: white queens 17, black queens 19
%e A308632   +-----------------------+
%e A308632   | W . W . . . . . W . W |
%e A308632   | . . . . B B B . . . . |
%e A308632   | W . W . . . . . W . W |
%e A308632   | . . . . B . B . . . . |
%e A308632   | . B . . . B . B . B . |
%e A308632   | . B . . B . B . . B . |
%e A308632   | . B . . . B . B . B . |
%e A308632   | . . . . B . B . . . . |
%e A308632   | W . W . . . . . W . W |
%e A308632   | . . . W . . . . . . . |
%e A308632   | W . W . . . . . W . W |
%e A308632   +-----------------------+
%Y A308632 Cf. A250000.
%K A308632 nonn,hard,more
%O A308632 1,3
%A A308632 _Roy van Rijn_, Jun 12 2019