cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308633 Continued fraction for the decimal expansion of the concatenation of the terms of A051699 (distance from n to closest prime).

This page as a plain text file.
%I A308633 #30 Jun 21 2019 15:36:26
%S A308633 0,4,1,3,5,9,1,2,2,4,7,1,246,1,2,2,1,116363868,3,1,1,1,3,4,282,1,1,1,
%T A308633 2,1,8,2,1,1,1,1,7,10,7,1,2,1,6,2,1,2,7,2,11,1,3,1,4,1,4,1,3,5,9,1,1,
%U A308633 1,3,3,1,3,2,1,5,3,3,1,32,1,1,15,3,1,1,11,9,1
%N A308633 Continued fraction for the decimal expansion of the concatenation of the terms of A051699 (distance from n to closest prime).
%C A308633 Continued fraction for .2100101012101012101012101232101012321... (see A051699).
%C A308633 Very high value for a(17) = 116363868. This should imply that using the first 16 terms we have a good rational approximation of this decimal expansion: 131256182/624999375 is ok up to the 25th decimal digit.
%p A308633 Digits:=200: with(numtheory): P:=proc(q) local a,b,n; a:=21;
%p A308633 for n from 2 to q do if isprime(n) then a:=10*a; else
%p A308633 b:=min(nextprime(n)-n,n-prevprime(n)); a:=a*10^length(b)+b; fi; od;
%p A308633 op(convert(evalf(a/10^length(a)),confrac,100)); end: P(200);
%Y A308633 Cf. A030168, A051699.
%K A308633 base,cofr,nonn,easy
%O A308633 0,2
%A A308633 _Paolo P. Lava_, Jun 17 2019