A308644 Number of ways to write n as (3^a*5^b)^2 + c*(3c+1)/2 + d*(7d+1)/2, where a and b are nonnegative integers, and c and d are integers.
1, 1, 1, 1, 2, 3, 1, 1, 2, 2, 2, 2, 3, 4, 2, 5, 3, 2, 3, 2, 3, 1, 3, 4, 3, 4, 5, 3, 5, 4, 6, 2, 2, 4, 4, 6, 2, 4, 6, 7, 5, 3, 4, 6, 3, 4, 4, 2, 4, 3, 4, 3, 3, 4, 5, 5, 5, 2, 3, 8, 3, 5, 4, 7, 5, 4, 4, 4, 4, 5, 4, 1, 4, 5, 4, 1, 3, 3, 6, 4, 7, 7, 3, 5, 7, 8, 2, 4, 5, 6, 7, 3, 8, 5, 7, 8, 4, 7, 8, 2
Offset: 1
Keywords
Examples
a(152) = 1 with 152 = (3^0*5^0)^2 + (-4)*(3*(-4)+1)/2 + 6*(7*6+1)/2. a(129894) = 1 with 129894 = (3^0*5^1)^2 + 154*(3*154+1)/2 + 164*(7*164+1)/2. a(200963) = 1 with 200963 = (3^1*5^0)^2 + 364*(3*364+1)/2 + 24*(7*24+1)/2. a(371278) = 1 with 371278 = (3^3*5^1)^2 + (-382)*(3*(-382)+1)/2 + (-196)*(7*(-196)+1)/2. a(534699) = 1 with 534699 = (3^2*5^2)^2 + 543*(3*543+1)/2 + (-109)*(3*(-109)+1)/2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Universal sums of three quadratic polynomials, Sci. China Math., in press.
Crossrefs
Programs
-
Mathematica
PenQ[n_]:=PenQ[n]=IntegerQ[Sqrt[24n+1]]; tab={};Do[r=0;Do[If[PenQ[n-9^a*25^b-x(7x+1)/2],r=r+1],{a,0,Log[9,n]},{b,0,Log[25,n/9^a]},{x,-Floor[(Sqrt[56(n-9^a*25^b)+1]+1)/14],(Sqrt[56(n-9^a*25^b)+1]-1)/14}];tab=Append[tab,r],{n,1,100}];Print[tab]
Comments